
HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 1

Swinburne University Of Technology

Faculty of Information and Communication Technologies

ASSIGNMENT COVER SHEET

Subject Code: HIT3303/8303

Subject Title: Data Structures & Patterns

Assignment number and title: 1 - Arrays, Indexers, and Iterators

Due date: March 31, 2009, 02:30 p.m., on paper

Lecturer: Dr. Markus Lumpe

Your name:

Marker's comments:

Problem Marks Obtained

1 55

2 15

3 30

Total 100

Extension certification:

This assignment has been given an extension and is now due on

Signature of Convener:

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 2

Problem Set 1: Arrays, Indexers, and Iterators

Problem 1: Problem Solving in C++ (55%)

Around 1550 Blaise de Vigenère, a French diplomat from the court of Henry III of
France, developed a new scrambling technique that uses 26 alphabets to cipher a text.
The Vigenère Cipher is a polyalphabetic substitution technique based on the following
tableau:
Key\Letter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
J K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
L M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
M N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The Vigenère cipher uses this table together with a keyword to encode a message. For
example, suppose we wish to scramble the following message:

TO BE OR NOT TO BE THAT IS THE QUESTION

using the keyword RELATIONS. We begin by writing the keyword, repeated as many
times as necessary, above the message. To derive the encoded text using the tableau,
for each letter in the message, one finds the intersection of the row given by the
corresponding keyword letter and the column given by the message letter itself to pick
out the encoded letter.

 Keyword: RE LA TI ONS RE LA TION SR ELA TIONSREL

 Message: TO BE OR NOT TO BE THAT IS THE QUESTION

 Scrambled Message: LT NF IA CCM LT NF NQPH BK YTF KDTGMATZ

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 3

Decoding of an encrypted message is equally straightforward. One writes the keyword
repeatedly above the message:

 Keyword: RE LA TI ONS RE LA TION SR ELA TIONSREL

 Scrambled Message: LT NF IA CCM LT NF NQPH BK YTF KDTGMATZ

 Decoded Message: TO BE OR NOT TO BE THAT IS THE QUESTION

This time one uses the keyword letter to pick a row of the table and then traces the row
to the column containing the encoded letter. The index of that column is the decoded
letter.

Stage 1 (35%)

Implement a C++ dynamic link library called Vigenere (Windows file name
Vigenere.dll, Unix file name libVigenere.so, and MacOS file name
libVigenere.dylib). That is, define a header file Vigenere.h defining the class
Vigenere and a C++ file Vigenere.cpp that implements this class.

class Vigenere
{
private:
 char fCharacterMap[26][26];

 void SetupTable();
 void EncodeChar(char aKey, char& aChar) const;
 void DecodeChar(char aKey, char& aChar) const;

public:
 Vigenere();

 std::string MakeKeyUppercase(char* aKey);

 void Encode(const std::string& aUppercaseKey, int& aKeyIndex,
 std::string& aText) const;
 void Decode(const std::string& aUppercaseKey, int& aKeyIndex,
 std::string& aText) const;
};

The methods Encode and Decode only cipher characters (or letters). All other
characters remain unchanged (i.e., the cipher process ignores them). Furthermore, the
Vigenère cipher uses upper case characters only. That is, both the keyword and the
message have to be converted to uppercase characters strings first before applying the
cipher. However, one requirement of this assignment is that the all methods of class
Vigenere properly handle case-sensitive spelling. That is:

 Keyword: R elati o nsRel at ionsRel ati o nsRel

 Message: A horse! a horse! my kingdom for a horse.

 Encoded Message: S masmn! p vhjxq! ns txbzvty gia p vhjxq.

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 4

Both Encode and Decode take three reference arguments: aUppercaseKey,
aKeyIndex, and aText. The parameter aUppercaseKey is a “constant reference” to
the key string in the caller space. In other words, aUppercaseKey is a constant object
that provides a read-only access to the key string in the caller space without copying.
The parameters aKeyIndex and aText, on the other hand, are reference parameters
that allow for the occurrences of side effects. More precisely, both Encode and Decode
alter these parameters. The parameter aKeyIndex denotes an index into
aUppercaseKey to locate the next key character. The cipher process increments
aKeyIndex every time a character in aText has been processed. Since aKeyIndex is
a reference parameter, the effect on aKeyIndex is visible also to the caller. The
purpose of passing aText by reference is to avoid copying and to perform an in-place
manipulation of the individual characters in aText. That is, Encode and Decode, both
read and write to aText in order to perform their corresponding cipher function. The
result is visible to the caller. Conceptually, actual parameters to aUppercaseKey are
passed by constant reference, whereas actual parameters to aKeyIndex and aText
are passed by reference.

Example:

 string lUppercaseKey = “RELATIONS”

 int lKeyIndex = 0

 string lText = “A horse! A horse!”

Encode(lUppercaseKey, lKeyIndex, Text)

-> lText = “S masmn! P vhjxq!”

-> lKeyIndex = 3

lText = “my kingdom for a”

Encode(lUppercaseKey, lKeyIndex, lText)

-> lText = “ns txbzvty gia p”

-> lKeyIndex = 7

The class Vigenere defines also an additional public method MakeKeyUppercase and
three private methods. These are auxiliary methods that facilitate the definition of the
public members. In this assignment it is required to define and use the private methods
appropriately! You must not change the class specification!

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 5

Stage 2 (10%)

Using the dynamic link library Vigenere implement the C++ console application
scramble that takes two arguments key and file_name and encodes the text file
named file_name:

 $> ./scramble Relations Sample.txt

generates the file Sample.txt.secure.txt, the encoded version of Sample.txt.

The encoding of a text file has to be implemented in a while loop:

 while (getline(lReader, lLine))
 {
 lScrambler.Encode(lUppercaseKey, lKeyIndex, lLine);
 lOutput << lLine << endl;
 }

Remember to set the system-specific environment to locate the Vigenere shared library
(Windows: PATH, Linux: LD_LIBRARY_PATH, and MacOS: DYLD_LIBRARY_PATH).

Stage 3 (10%)

Using the dynamic link library Vigenere implement the C++ console application
unscramble that takes two arguments key and file_name and decodes the text file
named file_name:

 $> ./unscramble Relations Sample.txt.secure.txt

produces the file Sample.txt.secure.txt.public.txt, the decoded version of
Sample.txt.secure.txt.

The decoding of a text file has to be implemented in a while loop:

 while (getline(lReader, lLine))
 {
 lScrambler.Decode(lUppercaseKey, lKeyIndex, lLine);
 lOutput << lLine << endl;
 }

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 6

Problem 2: Indexer (15%)
Define a Vigenère indexer adhering to the following class specification:

class VigenereIndexer
{
private:
 Cipher fCipher;
 std::string fUppercaseKey;
 bool fMode;
 int fKeyIndex;

public:
 VigenereIndexer(char* aKey, bool aMode);

 char operator[](const char aChar);
};

A Vigenère indexer is an object that is initialized with a code word aKey and an
encryption modus aMode (i.e., aMode == true for encoding, aMode == false for
decoding). The indexer defines an on-the-fly encryption mechanism. Each consecutive
use of the [] operator will yield the corresponding encoded or decoded character.

Build a program using the Vigenère indexer and change the main function to contain a
while loop as follows (lScrambler is the corresponding indexer):

 char lChar;
 while ((lChar = lReader.get()) != EOF)
 {
 lOutput << lScrambler[lChar];
 }

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 7

Problem 3: Iterators (30%)

Stage 1 – Output Iterator (15%)

Define a write-only Vigenère output iterator:

class VigenereOutputIterator
{
private:
 Cipher fCipher;
 std::string fUppercaseKey;
 int fKeyIndex;
 std::ofstream& fOutStream;

public:
 VigenereOutputIterator(char* aKey, std::ofstream& aOutStream);

 // Iterator behavior
 VigenereOutputIterator& operator*();
 VigenereOutputIterator& operator=(const char aChar);
 VigenereOutputIterator& operator++();
 VigenereOutputIterator& operator++(int);
};

The output iterator performs the encoding process. We initialize the output iterator with
the output file stream aOutStream of type ofstream. We pass this stream by
reference to the constructor of the output iterator.

An output iterator is like a “black hole”. It only provides a write operation. No read is
supported. However, each operation supported by the output iterator has to return the
very same iterator object. For this reason each defined operator has as return type
VigenereOutputIterator&. Interestingly, only the assignment operator alters the
state of the output iterator. All other operators, though required to build a program, just
return *this.

See also http://www.cplusplus.com/reference/std/iterator/ostream_iterator.html

Build a program using the Vigenère output iterator and change the main function to
contain a while loop as follows (lKey stands for the keyword argument and lOutput
for the output file stream):

 VigenereOutputIterator lScrambler(lKey, lOutput);
 char lChar;
 while ((lChar = lReader.get()) != EOF)
 {
 *lScrambler++ = lChar;
 }

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 8

Stage 2 – Forward Iterator (15%)

Define a read-only Vigenère forward iterator:

class VigenereForwardIterator
{
private:
 Cipher fCipher;
 std::string fUppercaseKey;
 int fKeyIndex;
 std::ifstream& fInStream;
 char fCurrentChar;

public:
 VigenereForwardIterator(char* aKey, std::ifstream& aInStream);

 char operator*() const;
 VigenereForwardIterator& operator++();
 VigenereForwardIterator operator++(int);

 bool eof() const;
};

The forward iterator performs the decoding process. We initialize the forward iterator
with the input file stream aInStream of type ifstream. We pass this stream by
reference to the constructor of the forward iterator. In addition, the constructor
initializes fCurrentChar using one of the increment operators.

A forward iterator provides a read operation only. No write is supported. The magic
happens in the increment operators. Here, we read the next character from the input
stream and perform on-the-fly decoding. The result of this process is stored in
fCurrentChar. The next read (i.e., an application of the dereference operator) will
yield the decoded character. If we do not increment the iterator between dereference
calls, then the very same decoded character is returned.

The method eof() is a special auxiliary function to test for the end of the forward
iterator.

Build a program using the Vigenère forward iterator and change the main function to
contain a while loop as follows (lKey stands for the keyword argument and lReader
for the input file stream):
 for (VigenereForwardIterator iter(lKey, lReader); !iter.eof(); iter++)
 {

 lOutput << *iter;
 }

Submission deadline: Tuesday, March 31, 2009, 2:30 p.m.

Submission procedure: on paper.

