
HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 1

Swinburne University Of Technology

Faculty of Information and Communication Technologies

ASSIGNMENT COVER SHEET

Subject Code: HIT3303

Subject Title: Data Structures & Patterns

Assignment number and title: 2 – Lists and Design Patterns

Due date: April 7, 2009, 02:30 p.m., on paper

Lecturer: Dr. Markus Lumpe

Your name:

Marker's comments:

Problem Marks Obtained

1 27

2 79

Total 106

Extension certification:

This assignment has been given an extension and is now due on

Signature of Convener:

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 2

Problem Set 2: Lists and Design Patterns

Preliminaries

Study or review the following concepts:

1. C++ templates

2. What is difference between value semantics and reference semantics?

3. What is a constant reference?

4. What is a constant object?

5. What is an enumeration type?

6. What is a typedef declaration?

7. What is delete and how does it work?

8. When do we need destructors?

9. What is a state machine?

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 3

Problem 1:

Define a double-linked list that satisfies the following template class specification:

template<class DataType>
class Node
{
private:
 const DataType& fValue;
 Node<DataType>* fNext;
 Node<DataType>* fPrevious;

public:
 Node(const DataType& aValue,
 Node<DataType>* aNext = (Node<DataType>*)0,
 Node<DataType>* aPrevious = (Node<DataType>*)0);
 ~Node();

 const DataType& GetValue() const;
 const Node<DataType>* GetNext() const;
 const Node <DataType>* GetPrevious() const;
};

The template class Node defines the structure of a double-linked list. It uses two
pointers: fNext and fPrevious to connect two adjacent list elements. The
constructor takes aValue, aNext, and aPrevious as arguments and returns a
properly initialized list node. The arguments aNext and aPrevious take a default
argument (Node<DataType>*)0, which is a null-pointer to elements of type Node.
The destructor destroys the list and releases all allocated resources (i.e., memory) in
turn. The methods GetValue, GetNext, and GetPrevious and data providers
that do not change the state of the corresponding object. As a result, objects of type
Node are constant objects.

There is, however, one complication. Template classes are “class blueprints” or,
better, abstractions over classes. Before we can use template classes, we have to
instantiate them. But, the instantiation process, to work correctly, requires also the
implementation. For this reason, when defining template classes, the implementation
has to be included in the header file. There are two ways to accomplish this:

• Implement the member functions directly in the class specification (like it is
done in Java or C#).

• Implement the member functions outside the class specification but within
the same header file.

If you follow this scheme, working with templates is pretty straightforward.

Implement class Node.

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 4

Test sample 1:

void TestListImplementation1()
{
 string s1("One");
 string s2("Two");
 string s3("Three");
 string s4("Four");

 Node<string> n1(s1);
 Node<string> n2(s2, (Node<string>*)0, &n1);
 Node<string> n3(s3, (Node<string>*)0, &n2);
 Node<string> n4(s4, (Node<string>*)0, &n3);

 cout << "Forward:" << endl;

 for (const Node<string>* nodes = &n1;
 nodes != (Node<string>*)0; nodes = nodes->GetNext())
 {
 cout << nodes->GetValue() << endl;
 }

 cout << "Backward:" << endl;

 for (const Node<string>* nodes = &n4;
 nodes != (Node<string>*)0; nodes = nodes->GetPrevious())
 {
 cout << nodes->GetValue() << endl;
 }
}

Result:

Forward:

One

Two

Three

Four

Backward:

Four

Three

Two

One

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 5

Test sample 2:

void TestListImplementation2()
{
 string s1("One");
 string s2("Two");
 string s3("Three");

 Node<string>* pn1 = new Node<string>(s1);
 Node<string>* pn2 = new Node<string>(s2, (Node<string>*)0, pn1);
 Node<string>* pn3 = new Node<string>(s3, (Node<string>*)0, pn2);

 cout << "Tree elements:" << endl;

 for (const Node<string>* nodes = pn1;

nodes != (Node<string>*)0; nodes = nodes->GetNext())
 {
 cout << "(";
 if (nodes->GetPrevious() != (Node<string>*)0)
 cout << nodes->GetPrevious()->GetValue();
 else
 cout << "<NULL>";

 cout << "," << nodes->GetValue() << ",";

 if (nodes->GetNext() != (Node<string>*)0)
 cout << nodes->GetNext()->GetValue();
 else
 cout << "<NULL>";

 cout << ")" << endl;
 }

 delete pn2;

 cout << "Two elements:" << endl;

 for (const Node<string>* nodes = pn1;

nodes != (Node<string>*)0; nodes = nodes->GetNext())
{
 cout << "(";
 if (nodes->GetPrevious() != (Node<string>*)0)
 cout << nodes->GetPrevious()->GetValue();
 else
 cout << "<NULL>";

 cout << "," << nodes->GetValue() << ",";

 if (nodes->GetNext() != (Node<string>*)0)
 cout << nodes->GetNext()->GetValue();
 else
 cout << "<NULL>";

 cout << ")" << endl;
 }

 delete pn3;
 delete pn1;
}

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 6

Result:

Tree elements:

(<NULL>,One,Two)

(One,Two,Three)

(Two,Three,<NULL>)

Two elements:

(<NULL>,One,Three)

(One,Three,<NULL>)

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 7

Problem 2:
Define a bi-directional list iterator for double-linked lists that satisfies the following
template class specification:

template<class DataType>
class NodeIterator
{
private:

 enum IteratorStates { BEFORE, DATA , END };

 const Node<DataType>* fTop;
 const Node<DataType>* fLast;
 const Node<DataType>* fCurrent;
 IteratorStates fState;

public:
 NodeIterator(Node<DataType>* aList);

 DataType operator*() const; // dereference

 NodeIterator& operator++(); // prefix increment
 NodeIterator operator++(int); // postfix increment
 NodeIterator& operator--(); // prefix decrement
 NodeIterator operator--(int); // postfix decrement

 bool operator==(const NodeIterator& aOtherIter) const;
 bool operator!=(const NodeIterator& aOtherIter) const;

 NodeIterator begin();
 NodeIterator end();
};

The bi-directional list iterator implements the standard operators for iterators:
dereference to access the current iterator element, both versions of increment to
advance the iterator to the next element, and both versions of decrement to go
backwards. The list iterator also defines the equivalence predicates and the two
factory methods begin() and end(). The method begin() returns a new list
iterator positioned before the first element of the double-linked list, whereas end()
returns a new list iterator that is positioned after the last element of the double-
linked list.

Implement the list iterator. Please note that the constructor of the list iterator has to
properly set fTop, fLast, and fCurrent. In particular, the constructor has to
position the iterator on the first element of the list or yield an iterator equivalent to
end() if the list is empty.

An iterator must not change the underlying collection. However, in the case of
NodeIterator we need a special marker to denote, whether the iterator is
“before” the first list element or “after” the last list element. Since we cannot change
the underlying list, we need to add “state” to the iterator. Using the iterator state
(i.e., fState) we can now clearly mark when the iterator is before the first element,
within the first and the last element, or after the last element.

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 8

To guarantee to correct behavior of the NodeIterator, it must implement a “state
machine” with three states: BEFORE, DATA, END. The following state transition
diagram illustrates, how NodeIterator works:

All increment and decrement operators have to test, whether the iterator is still
positioned within the collection. In this case the current iterator is different from
both begin() and end(). If the iterator is positioned before the first element, then
it is equivalent to begin(). If the iterator is positioned past the last element, then it
is equivalent to end(). Please note that the iterator can in one step become
equivalent to begin() or end().

Implement class NodeIterator.

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

 9

Test sample 3:

void TestListIterator()
{
 Node<int> n1(1);
 Node<int> n2(2, (Node<int>*)0, &n1);
 Node<int> n3(3, (Node<int>*)0, &n2);
 Node<int> n4(4, (Node<int>*)0, &n3);
 Node<int> n5(5, (Node<int>*)0, &n4);
 Node<int> n6(6, (Node<int>*)0, &n5);

 cout << "Forward iteration:" << endl;
 NodeIterator<int> iter1(&n1);

 for (; iter1 != iter1.end(); iter1++)
 {
 cout << *iter1 << endl;
 }

 cout << "Backward iteration:" << endl;
 NodeIterator<int> iter2(&n6);

 for (; iter2 != iter2.begin(); iter2--)
 {
 cout << *iter2 << endl;
 }
}

Result:

Forward iteration:
1
2
3
4
5
6
Backward iteration:
6
5
4
3
2
1

Submission deadline: Tuesday, April 7, 2009, 2:30 p.m.

Submission procedure: on paper.

