HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

Swinburne University Of Technology

Faculty of Information and Communication Technologies

ASSIGNMENT COVER SHEET
Subject Code: HIT3303
Subject Title: Data Structures & Patterns
Assignment number and title: 3 - List ADT
Due date: April 28, 2009, 02:30 p.m., on paper
Lecturer: Dr. Markus Lumpe
Your nhame:
Marker's comments:
Problem Marks Obtained
1 86
Total 86

Extension certification:

This assignment has been given an extension and is now due on

Signature of Convener:

HIT3303/8303 Semester 1, 2009

Problem Set 3: List ADT

Preliminaries
Review the solution of problem set 2.
Problem 1:

Consider the following C++ class specification

template<class ElementType>
class List

{

private:

template<class DataType>
class Node

{

}i

template<class DataType>
class Nodelterator

{

}i

Node<ElementType>* fTop;
Node<ElementType>* flast;

public:

typedef NodeIterator<ElementType> ListIterator;

List () ;
~List ();

void Add(const ElementType& aElement

) ;

void AddFirst(const ElementType& aElement

bool Delete(const ElementType& aElement

void DeleteFirst () ;
void Deletelast () ;

const ElementType& operator[] (int alndex

ListIterator GetIterator () const;

}i

) ;

)

) ;

const;

Dr. Markus Lumpe

The specification defines an interface for the abstract data type List. List is a
template class that is parameterized over the list element type ElementType. We

wish list to support the following operations:

* Construct an empty list.

* Destruct a list, that is, release any allocated resources.

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

e Add an element at the end of a list.
* Add and element at the top of a list.

* Delete a given element from a list (return true, if the element was a member
of the list).

* Delete the first element of a list.
* Delete the last element of a list.
* Provide an indexer to access elements of the list using array semantics.

* Provide a bi-directional iterator to traverse the elements of the list either in
forward or backwards manner.

A particular feature of the definition of List is that we would like to hide the
implementation details from clients of List. For this reason we declare the template
class Node and NodeIterator in the private section of List. Node and
NodeIterator are placeholders for the template classes defined in problem set 2.
So, we just need to incorporate their definitions into the definition of the template
class List. In fact, the template class List now constitutes an Adapter for Node and
exposes the required functionality using class Node as underlying implementation
representation. Furthermore, GetIterator () is a Factory method that returns an
iterator that is an instance of NodeIterator.

There is one complication, however. The class List requires access to the data
members of class Node. We need, therefore, to change the visibility Node’s data
members from private to public.

Please note that when using template classes both the specification and the method
implementations need to be available. For this reason, you should define all template
classes in header files. It is recommended, but not required, to define all methods
within the class declaration (this is also possible in C++ and resembles the way
classes are defined in Java or C#).

To define the template class List, the specifications for classes Node and
NodeIterarator need to be included into the region of the class List. You can
either copy the original specification (not recommended) or use the #include

directive to accomplish this task. The latter technique will be demonstrated in the
labs.

Implement class List.

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

Test sample 1:

void TestListl ()
{

string sl ("One");
string s2("Two");
string s3("Three");
string s4("Four");

List<string> 1;

1.Add(sl);
1.Add(s2);
1.Add(s3);
1.Add(s4);

cout << "Forward:" << endl;

for (List<string>::ListlIterator iter = l.GetIterator();
iter != iter.end(); iter++)

cout << *iter << endl;

cout << "Backward:" << endl;

for (List<string>::ListIterator iter = l.GetIterator().end();
-—-iter != iter.begin();)

cout << *iter << endl;

Result:

Forward:
One

Two
Three
Four
Backward:
Four
Three
Two

One

HIT3303/8303 Semester 1, 2009

Test sample 2:

void TestList2 ()
{

string sl ("One");
string s2("Two");
string s3("Three");

List<string> 1;

1.Add(sl);
1.Add(s2);
1.Add(s3);

cout << "Tree elements:" << endl;

for (List<string>::ListIterator iter =
iter
{
cout << *iter << endl;

}
1.Delete(s2);
cout << "Two elements:" << endl;

for (List<string>::ListIterator iter =
iter

cout << *iter << endl;

Result:

Tree elements:
One

Two

Three

Two elements:
One

Three

l.GetIterator();
= iter.end();

l.GetIterator();
= iter.end();

Dr. Markus Lumpe

iter++)

iter++)

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

Test sample 3:

void TestList3()

{
List<int> 1;

~.

o e

~.

H e
oUW N
-~ N

~.

cout << "Six elements:" << endl;

for (List<int>::ListIterator iter = 1l.GetIterator();
iter != iter.end(); iter++)

cout << *iter << endl;

}
l.DeleteFirst () ;
cout << "First Deleted:" << endl;

for (List<int>::ListIterator iter = 1l.GetIterator();
iter != iter.end(); iter++)

cout << *iter << endl;

1.Deletelast();
cout << "Last Deleted:" << endl;

for (List<int>::ListIterator iter = 1l.GetIterator();
iter != iter.end(); iter++)

cout << *iter << endl;

}
1.AddFirst(0);
cout << "First Added:" << endl;

for (List<int>::ListIterator iter = 1l.GetIterator();
iter != iter.end(); iter++)

cout << *iter << endl;

HIT3303/8303 Semester 1, 2009 Dr. Markus Lumpe

Result:

Six elements:

irst Deleted:

ast Deleted:

irst Added:

O wdNDOMHEHO WNhE oy ddWN E OOl WDN R

Submission deadline: Tuesday, April 28, 2009, 2:30 p.m.

Submission procedure: on paper.

