

Enterprise .NET Portfolio
Semester 1, 2011

Daniel Lo Nigro – Student ID 6508812

Contents

The contents of my portfolio are in the order shown here:

1. Introduction and Learning summary report

2. Experience report (and associated code)

3. Research report – Security (and associated code)

4. Short report – Security concerns for web services

5. Short report – ASP.NET Web forms

6. Short report – Model-View-Controller architectural pattern

7. Short report – Pros and Cons of the ADO.NET Provider Model

8. Short report – Windows Services

9. Other miscellaneous portfolio writeups, and assignments

10. Assignment code

11. Spikes (and associated code)

Learning Summary Report

Page 1 of 3

Learning Summary Report

1 Introduction
Enterprise .NET is an introduction into the world of .NET technologies used in enterprise

environments. Especially with newer .NET versions (3.5 and 4.0), Microsoft have added a wide range

of new technologies that enhance the development experience. These include new data access

libraries such as Entity Framework, support for new architectural patterns (like ASP.NET MVC, an

implementation of the MVC pattern), user interface shininess (WCF and Silverlight), and other

overall awesomeness (like LINQ). In my opinion, creating applications with the .NET Framework is

fun and efficient.

In my portfolio, I’ll demonstrate a number of these technologies, both new and old. I will

demonstrate my knowledge of .NET technologies, design patterns and security issues, and how this

knowledge applies to all the intended learning outcomes for Enterprise .NET.

2 Reflection
I have previously done a number of .NET subjects at Swinburne, including Object-Oriented

Programming and Advanced .NET (both lectured by Andrew Cain), and Database Programming

(which I believe was lectured by Clinton Woodward). All three of these subjects had specific goals

and intended learning outcomes related to these:

 Object-oriented programming was, as the name suggests, an introduction to object

orientation. There was some discussion about .NET-specific functionality, but most of the

work was not really C#- or .NET-specific, instead focusing on object-orientation principles

(which are language-independent).

 Advanced .NET focused mainly on concurrency constructs in .NET, using C#. This included

things like multithreading and the associated problems (like locking). Again, a lot of this was

language-independent principles instead of .NET-specific things.

 Database Programming was mainly focused on .NET technologies used to access databases.

This included ADO.NET (which is also covered in this portfolio) and NHibernate, as well as

design patterns for creating business layers. This was more into the realm of .NET-specific

technologies, but didn’t cover too much (apart from database technologies, of course!)

Enterprise .NET is the first subject I’ve done that’s been entirely focused on .NET technologies. It was

a great unit (one of the best I’ve done at Swinburne) and the lectures were all very enjoyable. In

Enterprise .NET, I have learnt about various .NET technologies, such as COM+, MSMQ, Entity

Framework, WCF, the MSDTC, configuration file encryption, Silverlight, and many more. In addition

to this, I’ve also learned about software development patterns (such as patterns used to develop the

business layer of an application) and security concerns associated with web-accessible applications.

As I currently work at a company that uses Microsoft products and technologies extensively, the

Enterprise .NET unit has helped me significantly. I really do like C# (it is one of my favourite

programming languages), so knowing about the technologies used in the industry will definitely help

Learning Summary Report

Page 2 of 3

me both now and in the future. I’m looking forward to using a lot of the technologies I’ve learnt

about in “real” situations. I’m very tempted to rewrite my website using ASP.NET MVC (it currently

uses PHP).

3 Self-assessment
This subject has four learning outcomes, which I believe I have successfully addressed to the

following levels:

 Adequate Good Outstanding Exemplary

ILO 1: Implement software solutions that illustrate
the purpose of .NET technologies related to
enterprise application development.

✔ ✔ ✔

ILO 2: Describe an architecture for a software
solution to a given business scenario, and select and
justify the .NET technologies needed for its
implementation.

✔

ILO 3: Describe architectural patterns and best
practices for developing enterprise applications and
relate these to the .NET technologies covered.

✔ ✔

ILO 4: Explain security issues that arise when
developing distributed and service based
applications and how these security concerns can be
addressed to mitigate potential threats.

✔ ✔ ✔ ✔

3.1 Intended Learning Outcome 1

ILO1: Implement software solutions that illustrate the purpose of .NET

technologies related to enterprise application development

I believe that I have addressed this learning outcome to an outstanding level. I have written a

detailed description on many of the technologies covered in this unit, including a writeup on

Windows Forms, and Windows services. In addition to this, I have written a short report on both the

ADO.NET Provider Model, and ASP.NET Web Forms.

 In the experience report about the program I developed, I also wrote about all the .NET

technologies chosen for the program, and why they were chosen.

Most of the pieces required for an adequate result were done via the weekly assignment work. The

following were done as additional pieces:

 DAL using ADO.NET – Done via the transaction scripts spike

 Web user interface – Done via my main portfolio piece (jobs site)

 MSDTC for distributed transactions – Done via WCF distributed transactions spike

 Client-side rich user interface – Done via password hashing example GUI example

I believe that the experience report, combined with the two short reports and other writeups, is

more than sufficient to obtain an “Outstanding” result for this Intended Learning Outcome.

Learning Summary Report

Page 3 of 3

3.2 Intended Learning Outcome 2

ILO 2: Describe an architecture for a software solution to a given business

scenario, and select and justify the .NET technologies needed for its

implementation.

I believe this is covered in my experience report, to an adequate level. The experience report for my

portfolio piece describes the business scenario, and gives details of the architecture, including all the

.NET technologies used, and why they were chosen. The amount of detail in the experience report

should be sufficient to address this intended learning outcome to at least an adequate level.

3.3 Intended Learning Outcome 3

ILO 3: Describe architectural patterns and best practices for developing

enterprise applications and relate these to the .NET technologies covered.

I believe this intended learning outcome is covered to a good level via the short report I have written

on the MVC architectural pattern and its usage in the development of web applications. The MVC

pattern was touched on briefly during the UI lectures and hence I believe it counts as an

“architectural pattern presented in this unit”.

The adequate pieces are met by the following:

 Business logic implemented using a domain model is shown via the program I developed as

part of my portfolio.

 Business logic implemented using transaction scripts is demonstrated via the spike I did

 Business logic implemented using table modules is demonstrated through a separate code

example included in the code examples.

3.4 Intended Learning Outcome 4

ILO 4: Explain security issues that arise when developing distributed and

service based applications and how these security concerns can be addressed

to mitigate potential threats.

I believe I have covered this intended learning outcome to an exemplary level. I initially wrote a

short report about SQL injection (to meet this ILO to a “good” level), but stretched it to a full

research report about a number of major security issues, and ways to avoid them using .NET

technologies. I have put a large amount of effort into the research report and spent around two

weeks writing it, researching the most common security issues and methods to resolve them. In

addition to the research report, I have also written a short report about security concerns for web

services.

In addition to both of these reports, the experience report written about my main piece has a

detailed writeup on how I have protected the application from the most common security issues,

referring back to the research report.

I believe all the work I’ve done should help make this ILO reach the exemplary level (or if not, at least

the outstanding level!)

Experience Report

Experience Report

Page 2 of 14

Experience Report

Table of Contents
1 Introduction .. 3

2 Problem Description ... 3

3 Requirements .. 3

4 Solution Architecture .. 4

5 Core Projects ... 4

5.1 Jobs.DataAccess .. 4

5.2 Jobs.BusinessLogic .. 5

5.3 Jobs.UI.Web .. 5

6 Unit Test Projects .. 5

6.1 Jobs.Tests.BusinessLogic ... 5

7 Additional Projects – Authentication .. 5

7.1 Jobs.AuthExample.Service .. 5

7.2 Jobs.AuthExample.Client .. 6

8 Security ... 6

8.1 User authentication .. 6

8.2 Most Common Security Issues .. 7

8.3 SQL Injection ... 7

8.4 Cross-Site Scripting ... 7

8.5 Cross-Site Request Forgery ... 7

8.6 Failure to restrict URL access .. 7

8.7 Username enumeration .. 7

9 Summary ... 8

10 References .. 8

11 Appendices .. 9

11.1 Class Diagrams .. 9

11.1.1 Data Access Layer .. 9

11.1.2 Business Logic Layer .. 10

11.1.3 UI Layer ... 11

11.1.4 Business Layer unit tests ... 12

11.2 Screenshots ... 12

Experience Report

Page 3 of 14

11.2.1 Main listing and job details ... 12

11.2.2 Begin application ... 13

11.2.3 Create account and apply ... 13

11.2.4 Administration – Index .. 14

11.2.5 Administration – Viewing applications ... 14

1 Introduction
This experience report will cover the major piece I’ve developed as part of my portfolio. My

employer (PageUp People) is a provider of a Software-as-a-Service system for careers websites. They

host the careers website for a number of large Australian companies, including Coles, Optus, ANZ,

BHP Billiton, Commonwealth Bank, Kmart, NAB and Suncorp. Their system has been around for over

10 years now, and so there is a large amount of legacy code in the system.

This portfolio piece is a demonstration of how the system may have been designed if it were to be

redone using more modern methodologies. Of course, not all the functionality is present (as the

system is MASSIVE), but some of the most common use cases have been completed:

 Recruiter listing a new job in the system

 Applicant applying for a job in the system

 Recruiter viewing all applications to a job

2 Problem Description
MegaCo1, a large corporation, is often hiring for many roles at the same time. Currently, they accept

job applications via email and fax. With the large number of applications they are receiving, this

process is becoming harder and harder. It’s impossible to keep track of all the applicants, and some

good applications end up getting lost. MegaCo has hired a well-known recruitment provider,

JobsRUs, to supply them with a computer-based RMS (Recruitment Management System), to help

them manage all the jobs and applications.

3 Requirements
The jobs system has the following requirements:

 Recruiters can:

o Log in as a recruiter

o List new jobs

o See applications to all the listed jobs

 Applicants can:

o Register / Log in as an applicant

o View all listed jobs

1
 Company name is fictitious 

Experience Report

Page 4 of 14

o Apply for any listed job

o Update their profile

 Ability to integrate into third party systems, in several parts of the system. Examples:

o Posting jobs to SEEK, MyCareer, etc.

o Single sign-on for recruiters

4 Solution Architecture
The system is structured in a three-tiered design (Data Access Layer, Business Layer, UI Layer), using

the ASP.NET MVC framework at the UI layer. Interfaces are used at all layers, and the Castle Windsor

IoC container library is used for dependency injection. This allows you to easily swap out the

business layer or data access layer implementation with another implementation, without having to

change any code. As long as it implements the interfaces correctly, there would be no issues.

This architecture is relatively common for web applications. In the future, a web service could

potentially be added for creating job applications and jobs, and it could move to a service-oriented

architecture. I did not think this was necessary or in-scope for this simple solution, so I’ve stuck with

a simple three-tiered design.

5 Core Projects
The solution is split into three main projects. Class diagrams for all these projects are available in the

appendices.

5.1 Jobs.DataAccess
This is the project containing the data access layer, implemented using Entity Framework 4.1. Entity

Framework was chosen because it is the latest data access technology from Microsoft, and it is quite

easy to use (although it is quite complex, it is quite easy to get started with). It supports Code-First

development, meaning there’s no autogenerated code and you can write all the model code yourself

instead. Code-First can generate the database schema based on the models, too.

Additionally, since it uses the ADO.NET database provider model, switching to a different database

system is easy. I was using SQL Server Express (provided with Visual Studio) during development,

and switched to SQL Server Compact 4.0 when deploying a test version to a test Windows Server

2008 R2 VPS I’ve got (as I don’t have enough memory free to install SQL Server Express). Even

though these are both dialects of SQL Server, they use different ADO.NET providers. Switching them

was simply a matter of changing the connection string in the Web.config file. It may even be possible

to switch to SQLite or MySQL, although I did not test this. I’ve written about the ADO.NET provider

model in more detail in a separate short report.

The repository pattern is used for CRUD operations. This abstracts the CRUD code from the actual

domain entities, which makes it easier to switch to a different database technology in the future.

One advantage of using the repository pattern over the active record pattern is that the entities are

“disconnected”. They’re simple objects rather than database objects, and hence they can be safely

passed down to the Business logic and UI layers (without converting them to basic DTOs, and

without fear of the business logic code or UI code calling any database methods on the models).

Experience Report

Page 5 of 14

5.2 Jobs.BusinessLogic
This is the project containing the business logic layer. It is implemented using the domain model

pattern. This is because the data access layer is using a domain model technology (Entity

Framework), so the domain model pattern is a good fit. The domain model pattern is the pattern

most commonly used with MVC websites, combined with a domain model data access layer

technology.

5.3 Jobs.UI.Web
This is the project containing the user interface layer. It is implemented using the ASP.NET MVC

framework. The ASP.NET MVC framework was chosen because it is easy to use, and generally results

in cleaner code than ASP.NET web forms. Additionally, the code is a lot easier to unit test, so unit

tests could be integrated later if wanted. Due to time constraints, I was unable to implement full unit

tests in my project, I only wrote some tests for the business layer.

 I’ve written more detail about the MVC pattern and the ASP.NET MVC framework elsewhere in my

portfolio.

6 Unit Test Projects

6.1 Jobs.Tests.BusinessLogic
This is an incomplete unit test project for the Jobs.BusinessLogic solution. It is implemented using

the Visual Studio Unit Testing Framework2, which was chosen because it comes with Visual Studio

(so no third party dependencies are required). The unit testing project also uses the Moq3 mocking

library, which was chosen due to its simplicity and popularity in the .NET community.

It currently contains a few unit tests for the application and applicant business logic classes, testing

their business rules are correctly applied. In the future, these could be extended to test more (as

more business logic rules are added), and unit tests for other projects (such as the UI layer and

authentication services) could be added.

7 Additional Projects – Authentication
In addition to these main projects, there are also two others that demonstrate implementing a

custom ASP.NET membership provider:

7.1 Jobs.AuthExample.Service
This project is a simple WCF service that demonstrates how to make an authentication web service.

During development, this service uses the standard wsHttp binding, as the server built-in to Visual

Studio does not support HTTPS4. However, in a live environment (and on my live test server), this

service would use the wsHttps binding, and hence be secured via HTTPS.

2
 http://msdn.microsoft.com/en-us/library/ms243147.aspx

3
 http://code.google.com/p/moq/

4
 See http://stackoverflow.com/questions/4651431/rest-wcf-service-over-ssl/4652059#4652059

http://msdn.microsoft.com/en-us/library/ms243147.aspx
http://code.google.com/p/moq/
http://stackoverflow.com/questions/4651431/rest-wcf-service-over-ssl/4652059#4652059

Experience Report

Page 6 of 14

Since it is just an example, it is not 100% complete. The basic functionality (checking for a valid

username and password, and registering new users) is supported, but in a live environment,

additional security measures (such as brute force protection) would be implemented.

7.2 Jobs.AuthExample.Client
This project is a basic example of how to implement a custom ASP.NET membership provider. It calls

the service mentioned above (Jobs.AuthExample.Service) to actually do the authentication. Like the

service, basic functionality (such as checking for a valid username and password, and registering new

users) is supported. Only the bare minimum number of required methods are implemented in the

membership provider, all others (currently unused by the application) throwing

NotImplementedExceptions.

A role provider is not implemented due to time constraints. In the future, roles could be used to

differentiate between administrators and recruiters, for example.

8 Security

8.1 User authentication
User authentication is quite an important issue with this system. There are two unique types of users

– The recruiters, and the applicants. Applicants will have a password, however they will just need it

to check the progress of their application (and update it if needed) and will not really use it for

anything else. Hence, the applicants do not need a full user authentication system, and so their

password will just be stored (salted and hashed) in the applicant database table.

On the other hand, recruiters are different. They will be doing most of the work in the system –

Creating new jobs, reviewing applicants for jobs, and so on. The company will most likely have an

existing user authentication system in place (for example, Active Directory or another LDAP

implementation, or something like Novell) which they will want to integrate into the jobs site.

Because of this, I have chosen to use the standard .NET provider model, which is very easy to use in

ASP.NET MVC. This allows us to easily switch the authentication model to use a different provider,

without any changes to the code (as long as the provider exists, of course!).

As mentioned above, I’ve also written a sample authentication WCF service and consumer, as an

example of how to implement a custom authentication provider. In the future, custom

authentication providers could be used for things like Single Sign-On or some other sort of unified

login system.

Actually authenticating the users is handled by the framework. With ASP.NET MVC, you simply need

to add the [Authorize] attribute to any controllers (for the whole controller) or actions (for individual

actions) to force the user to be authenticated in order to use them. If a user tries to access a

controller and they’re not logged in, they will be redirected to the login page. This also supports user

roles, although I have not used roles in my application. In the future, it could be modified to have

different roles (like system administrators, recruiters, hiring managers, etc.)

Experience Report

Page 7 of 14

8.2 Most Common Security Issues
The OWASP top 10 security issues are a list of the top 10 most common security issues found in web

applications (OWASP 2010a). I have attempted to ensure my code is not vulnerable to any of these

security vulnerabilities. Listed below are the most common issues, and a description of the steps I’ve

taken to ensure my application is not vulnerable

8.3 SQL Injection
SQL injection is discussed in detail in my security research report, so I will not go in to detail here. As

I am using the Entity Framework, SQL injection is not an issue. As mentioned in the research report,

one of the easiest methods of avoiding SQL injection vulnerabilities is to use a newer database

technology. When using an ORM system like Entity Framework, you do not need to write any SQL

yourself, which ensures that there will not be any security vulnerabilities in it.

8.4 Cross-Site Scripting
Cross-Site Scripting (XSS) is basically insertion of arbitrary script tags in the page, and is the result of

displaying user-supplied data on the page without “encoding” it. The OWASP project mentions that

“XSS is the most prevalent web application security flaw” (OWASP 2010b), because it is quite easy to

accidentally introduce an XSS hole into your application.

By default, the new “Razor” templating engine in MVC 3 automatically encodes all outputted

content (Guthrie 2010), ensuring Cross-Site Scripting is not possible. All text output in my application

is done via the Razor templating engine.

8.5 Cross-Site Request Forgery
Cross-Site Request Forgery (XSRF) is somewhat similar to XSS (and XSS can be used as an attack

vector). More information on XSRF can be found in the security research report.

My application is not vulnerable to XSRF because all forms have anti-forgery tokens. This is a

standard feature of the ASP.NET MVC framework, as I’ve described in my security research report.

8.6 Failure to restrict URL access
Failure to restrict URL access basically means that users are able to access administration sections of

the application, by guessing the URL. Sounds simple, but surprisingly it is the 8th most common

security issue (OWASP 2010a). My application is not vulnerable to this issue because it uses the

authentication functionality built-in to ASP.NET MVC (as mentioned in the user authentication

section above). The authentication functionality ensures that controllers decorared with the

“Authorize” attribute are only accessible if a user is logged in. If not, it kicks users back to a login

page.

This is part of the framework and has been extensively tested, so there should not be any issues with

it. Using a framework’s built-in security features is almost always more secure than “rolling your

own” security, and this is the case with ASP.NET (Anderson 2011).

8.7 Username enumeration
Username enumeration is a less common security issue. It is a type of attack where the backend

validation script tells the attacker if the supplied username is correct or not. My application is not

vulnerable because it displays a generic “The user name or password provided is incorrect” error

Experience Report

Page 8 of 14

message if either the username or password is wrong, giving away no information as to whether the

username is valid or not.

9 Summary
Using my knowledge of Enterprise .NET technologies, I have developed a solution using a three-

tiered architecture combined with MVC for the UI layer. This solution is efficient, has low coupling,

and is easy to modify and upgrade. Common security issues such as SQL injection, XSS (Cross Site

Scripting), XSRF (Cross-Site Request Forgery), username enumeration and unrestricted

administration access have been avoided through common sense, using the latest technologies, and

knowledge of the most common issues that plague web applications.

There is a test version live at http://109.169.68.230/test/, although I can’t guarantee this will be up

all the time. The test administration username and password are “admin” and “password1”

respectively. Note that the first load takes a while as the application gets stopped by IIS when it is

idle (and I have not yet figured out how to stop that happening).

10 References
Anderson, R 2011, Securing your ASP.NET MVC 3 Application, viewed 2011-06-04,
<http://blogs.msdn.com/b/rickandy/archive/2011/05/02/securing-your-asp-net-mvc-3-
application.aspx>.

Guthrie, S 2010, Introducing "Razor" - a new view engine for ASP.NET, viewed 2011-05-21,
<http://weblogs.asp.net/scottgu/archive/2010/07/02/introducing-razor.aspx>.

OWASP 2010a, Open Web Application Security Project Top 10 Project, viewed 2011-05-19,
<https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project>.

OWASP 2010b, Top 10 2010 - Cross-Site Scripting (XSS), viewed 2011-05-21,
<https://www.owasp.org/index.php/Top_10_2010-A2>.

http://109.169.68.230/test/
http://blogs.msdn.com/b/rickandy/archive/2011/05/02/securing-your-asp-net-mvc-3-application.aspx%3e
http://blogs.msdn.com/b/rickandy/archive/2011/05/02/securing-your-asp-net-mvc-3-application.aspx%3e
http://weblogs.asp.net/scottgu/archive/2010/07/02/introducing-razor.aspx%3e
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project%3e
http://www.owasp.org/index.php/Top_10_2010-A2%3e

Experience Report

Page 9 of 14

11 Appendices

11.1 Class Diagrams

11.1.1 Data Access Layer

Experience Report

Page 10 of 14

11.1.2 Business Logic Layer

Experience Report

Page 11 of 14

11.1.3 UI Layer

Experience Report

Page 12 of 14

11.1.4 Business Layer unit tests

11.2 Screenshots

11.2.1 Main listing and job details

Experience Report

Page 13 of 14

11.2.2 Begin application

11.2.3 Create account and apply

Experience Report

Page 14 of 14

11.2.4 Administration – Index

11.2.5 Administration – Viewing applications

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
C
o
d
e
\
J
o
b
s
\
J
o
b
s
.
B
u
s
i
n
e
s
s
L
o
g
i
c
\
A
p
p
l
i
c
a
t
i
o
n
B
L
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;

3
u
s
i
n
g

J
o
b
s
.
B
u
s
i
n
e
s
s
L
o
g
i
c
.
A
b
s
t
r
a
c
t
;

4
u
s
i
n
g

J
o
b
s
.
B
u
s
i
n
e
s
s
L
o
g
i
c
.
E
x
c
e
p
t
i
o
n
s
;

5
u
s
i
n
g

J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
.
E
n
t
i
t
i
e
s
;

6
u
s
i
n
g

J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
.
R
e
p
o
s
i
t
o
r
i
e
s
.
A
b
s
t
r
a
c
t
;

78
n
a
m
e
s
p
a
c
e

J
o
b
s
.
B
u
s
i
n
e
s
s
L
o
g
i
c

9
{

1
0

p
u
b
l
i
c

c
l
a
s
s

A
p
p
l
i
c
a
t
i
o
n
B
L

:

I
A
p
p
l
i
c
a
t
i
o
n
B
L

1
1

{

1
2

p
r
o
t
e
c
t
e
d

I
A
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y

_
a
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y
;

1
3

p
r
o
t
e
c
t
e
d

I
J
o
b
R
e
p
o
s
i
t
o
r
y

_
j
o
b
R
e
p
o
s
i
t
o
r
y
;

1
4

1
5

p
u
b
l
i
c

A
p
p
l
i
c
a
t
i
o
n
B
L
(
I
A
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y

a
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y
,

I
J
o
b
R
e
p
o
s
i
t
o
r
y

j
o
b
R
e
p
o
s
i
t
o
r
y
)

1
6

{

1
7

_
a
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y

=

a
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y
;

1
8

_
j
o
b
R
e
p
o
s
i
t
o
r
y

=

j
o
b
R
e
p
o
s
i
t
o
r
y
;

1
9

}

2
0

2
1

p
u
b
l
i
c

v
o
i
d

C
r
e
a
t
e
(
A
p
p
l
i
c
a
t
i
o
n

a
p
p
l
i
c
a
t
i
o
n
)

2
2

{

2
3

/
/

B
u
s
i
n
e
s
s

r
u
l
e
:

A
p
p
l
i
c
a
n
t

c
a
n

o
n
l
y

h
a
v
e

o
n
e

a
p
p
l
i
c
a
t
i
o
n

f
o
r

a

j
o
b

2
4

i
f

(
_
a
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y
.
A
p
p
l
i
c
a
n
t
A
l
r
e
a
d
y
A
p
p
l
i
e
d
(
a
p
p
l
i
c
a
t
i
o
n
.
A
p
p
l
i
c
a
n
t
,

a
p
p
l
i
c
a
t
i
o
n
.
J
o
b
)
)

2
5

t
h
r
o
w

n
e
w

D
u
p
l
i
c
a
t
e
A
p
p
l
i
c
a
t
i
o
n
E
x
c
e
p
t
i
o
n
(
"
Y
o
u

h
a
v
e

a
l
r
e
a
d
y

a
p
p
l
i
e
d

f
o
r

t
h
i
s

j
o
b
!
"
)
;

2
6

2
7

_
a
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y
.
C
r
e
a
t
e
(
a
p
p
l
i
c
a
t
i
o
n
)
;

2
8

2
9

/
/

B
u
s
i
n
e
s
s

r
u
l
e
:

W
h
e
n

a
n

a
p
p
l
i
c
a
t
i
o
n

i
s

r
e
c
e
i
v
e
d
,

i
n
c
r
e
m
e
n
t

a
p
p
l
i
c
a
t
i
o
n

c
o
u
n
t

f
o
r

t
h
e

j
o
b

b
y

1

3
0

_
j
o
b
R
e
p
o
s
i
t
o
r
y
.
I
n
c
r
e
m
e
n
t
A
p
p
C
o
u
n
t
(
a
p
p
l
i
c
a
t
i
o
n
.
J
o
b
)
;

3
1

}

3
2

3
3

p
u
b
l
i
c

I
E
n
u
m
e
r
a
b
l
e
<
A
p
p
l
i
c
a
t
i
o
n
>

G
e
t
F
o
r
J
o
b
(
J
o
b

j
o
b
)

3
4

{

3
5

r
e
t
u
r
n

_
a
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y
.
G
e
t
F
o
r
J
o
b
(
j
o
b
)
;

3
6

}

3
7

3
8

p
u
b
l
i
c

A
p
p
l
i
c
a
t
i
o
n

G
e
t
(
i
n
t

a
p
p
l
i
c
a
t
i
o
n
I
d
)

3
9

{

4
0

r
e
t
u
r
n

_
a
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y
.
G
e
t
(
a
p
p
l
i
c
a
t
i
o
n
I
d
)
;

4
1

}

4
2

}

4
3

}

4
4

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
P
o
r
t
f
o
l
i
o
\
C
o
d
e
\
J
o
b
s
\
J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
\
E
n
t
i
t
i
e
s
\
J
o
b
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;

3
u
s
i
n
g

S
y
s
t
e
m
.
C
o
m
p
o
n
e
n
t
M
o
d
e
l
.
D
a
t
a
A
n
n
o
t
a
t
i
o
n
s
;

45
n
a
m
e
s
p
a
c
e

J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
.
E
n
t
i
t
i
e
s

6
{

7

p
u
b
l
i
c

c
l
a
s
s

J
o
b

8

{

9

p
u
b
l
i
c

i
n
t

J
o
b
I
d

{

g
e
t
;

s
e
t
;

}

1
0

1
1

[
R
e
q
u
i
r
e
d
]

1
2

[
M
i
n
L
e
n
g
t
h
(
5
)
]

1
3

p
u
b
l
i
c

s
t
r
i
n
g

T
i
t
l
e

{

g
e
t
;

s
e
t
;

}

1
4

1
5

[
R
e
q
u
i
r
e
d
]

1
6

p
u
b
l
i
c

D
a
t
e
T
i
m
e

O
p
e
n
i
n
g
D
a
t
e

{

g
e
t
;

s
e
t
;

}

1
7

1
8

[
R
e
q
u
i
r
e
d
]

1
9

p
u
b
l
i
c

D
a
t
e
T
i
m
e

C
l
o
s
i
n
g
D
a
t
e

{

g
e
t
;

s
e
t
;

}

2
0

2
1

[
D
a
t
a
T
y
p
e
(
D
a
t
a
T
y
p
e
.
M
u
l
t
i
l
i
n
e
T
e
x
t
)
]

2
2

[
R
e
q
u
i
r
e
d
]

2
3

p
u
b
l
i
c

s
t
r
i
n
g

D
e
s
c
r
i
p
t
i
o
n

{

g
e
t
;

s
e
t
;

}

2
4

2
5

p
u
b
l
i
c

i
n
t

A
p
p
l
i
c
a
t
i
o
n
C
o
u
n
t

{

g
e
t
;

s
e
t
;

}

2
6

2
7

p
u
b
l
i
c

v
i
r
t
u
a
l

I
C
o
l
l
e
c
t
i
o
n
<
A
p
p
l
i
c
a
t
i
o
n
>

A
p
p
l
i
c
a
t
i
o
n
s

{

g
e
t
;

s
e
t
;

}

2
8

}

2
9

}

3
0

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
.
D
a
t
a
A
c
c
e
s
s
\
R
e
p
o
s
i
t
o
r
i
e
s
\
A
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;

2
u
s
i
n
g

S
y
s
t
e
m
.
L
i
n
q
;

3
u
s
i
n
g

J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
.
E
n
t
i
t
i
e
s
;

4
u
s
i
n
g

J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
.
R
e
p
o
s
i
t
o
r
i
e
s
.
A
b
s
t
r
a
c
t
;

56
n
a
m
e
s
p
a
c
e

J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
.
R
e
p
o
s
i
t
o
r
i
e
s

7
{

8

p
u
b
l
i
c

c
l
a
s
s

A
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y

:

R
e
p
o
s
i
t
o
r
y
B
a
s
e
<
A
p
p
l
i
c
a
t
i
o
n
>
,

I
A
p
p
l
i
c
a
t
i
o
n
R
e
p
o
s
i
t
o
r
y

9

{

1
0

p
u
b
l
i
c

o
v
e
r
r
i
d
e

v
o
i
d

C
r
e
a
t
e
(
A
p
p
l
i
c
a
t
i
o
n

a
p
p
l
i
c
a
t
i
o
n
)

1
1

{

1
2

u
s
i
n
g

(
v
a
r

c
o
n
t
e
x
t

=

n
e
w

J
o
b
s
C
o
n
t
e
x
t
(
)
)

1
3

{

1
4

/
/

T
e
l
l

t
h
e

f
r
a
m
e
w
o
r
k

t
h
e

j
o
b

a
n
d

a
p
p
l
i
c
a
n
t

a
r
e

n
o
t

n
e
w

1
5

c
o
n
t
e
x
t
.
J
o
b
s
.
A
t
t
a
c
h
(
a
p
p
l
i
c
a
t
i
o
n
.
J
o
b
)
;

1
6

c
o
n
t
e
x
t
.
A
p
p
l
i
c
a
n
t
s
.
A
t
t
a
c
h
(
a
p
p
l
i
c
a
t
i
o
n
.
A
p
p
l
i
c
a
n
t
)
;

1
7

1
8

c
o
n
t
e
x
t
.
A
p
p
l
i
c
a
t
i
o
n
s
.
A
d
d
(
a
p
p
l
i
c
a
t
i
o
n
)
;

1
9

c
o
n
t
e
x
t
.
S
a
v
e
C
h
a
n
g
e
s
(
)
;

2
0

}

2
1

}

2
2

p
u
b
l
i
c

b
o
o
l

A
p
p
l
i
c
a
n
t
A
l
r
e
a
d
y
A
p
p
l
i
e
d
(
A
p
p
l
i
c
a
n
t

a
p
p
l
i
c
a
n
t
,

J
o
b

j
o
b
)

2
3

{

2
4

u
s
i
n
g

(
v
a
r

c
o
n
t
e
x
t

=

n
e
w

J
o
b
s
C
o
n
t
e
x
t
(
)
)

2
5

{

2
6

i
n
t

c
o
u
n
t

=

(
f
r
o
m

a
p
p

i
n

c
o
n
t
e
x
t
.
A
p
p
l
i
c
a
t
i
o
n
s

2
7

w
h
e
r
e

a
p
p
.
J
o
b
I
d

=
=

j
o
b
.
J
o
b
I
d

2
8

w
h
e
r
e

a
p
p
.
A
p
p
l
i
c
a
n
t
I
d

=
=

a
p
p
l
i
c
a
n
t
.
A
p
p
l
i
c
a
n
t
I
d

2
9

s
e
l
e
c
t

a
p
p
)
.
C
o
u
n
t
(
)
;

3
0

r
e
t
u
r
n

c
o
u
n
t

!
=

0
;

3
1

}

3
2

}

3
3

3
4

p
u
b
l
i
c

I
E
n
u
m
e
r
a
b
l
e
<
A
p
p
l
i
c
a
t
i
o
n
>

G
e
t
F
o
r
J
o
b
(
J
o
b

j
o
b
)

3
5

{

3
6

u
s
i
n
g

(
v
a
r

c
o
n
t
e
x
t

=

n
e
w

J
o
b
s
C
o
n
t
e
x
t
(
)
)

3
7

{

3
8

/
/

J
o
i
n

t
o

a
p
p
l
i
c
a
n
t

a
s

w
e

w
a
n
t

a
p
p
l
i
c
a
n
t

d
e
t
a
i
l
s

t
o
o
.

3
9

v
a
r

a
p
p
l
i
c
a
t
i
o
n
s

=

f
r
o
m

a
p
p
l
i
c
a
t
i
o
n

i
n

c
o
n
t
e
x
t
.
A
p
p
l
i
c
a
t
i
o
n
s
.
I
n
c
l
u
d
e
(
"
A
p
p
l
i
c
a
n
t
"
)

4
0

w
h
e
r
e

a
p
p
l
i
c
a
t
i
o
n
.
J
o
b
I
d

=
=

j
o
b
.
J
o
b
I
d

4
1

s
e
l
e
c
t

a
p
p
l
i
c
a
t
i
o
n
;

4
2

4
3

r
e
t
u
r
n

a
p
p
l
i
c
a
t
i
o
n
s
.
T
o
L
i
s
t
(
)
;

4
4

}

4
5

}

4
6

4
7

p
u
b
l
i
c

o
v
e
r
r
i
d
e

A
p
p
l
i
c
a
t
i
o
n

G
e
t
(
i
n
t

i
d
)

4
8

{

4
9

u
s
i
n
g

(
v
a
r

c
o
n
t
e
x
t

=

n
e
w

J
o
b
s
C
o
n
t
e
x
t
(
)
)

5
0

{

5
1

r
e
t
u
r
n

c
o
n
t
e
x
t
.
A
p
p
l
i
c
a
t
i
o
n
s
.
I
n
c
l
u
d
e
(
"
A
p
p
l
i
c
a
n
t
"
)
.
W
h
e
r
e
(
a

=
>

a
.
A
p
p
l
i
c
a
t
i
o
n
I
d

=
=

i
d
)
.

F
i
r
s
t
O
r
D
e
f
a
u
l
t
(
)
;

5
2

}

5
3

}

5
4

}

5
5

}

5
6

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
J
o
b
s
\
J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
\
R
e
p
o
s
i
t
o
r
i
e
s
\
J
o
b
R
e
p
o
s
i
t
o
r
y
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;

3
u
s
i
n
g

S
y
s
t
e
m
.
L
i
n
q
;

4
u
s
i
n
g

J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
.
E
n
t
i
t
i
e
s
;

5
u
s
i
n
g

J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
.
R
e
p
o
s
i
t
o
r
i
e
s
.
A
b
s
t
r
a
c
t
;

67
n
a
m
e
s
p
a
c
e

J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
.
R
e
p
o
s
i
t
o
r
i
e
s

8
{

9

p
u
b
l
i
c

c
l
a
s
s

J
o
b
R
e
p
o
s
i
t
o
r
y

:

R
e
p
o
s
i
t
o
r
y
B
a
s
e
<
J
o
b
>
,

I
J
o
b
R
e
p
o
s
i
t
o
r
y

1
0

{

1
1

p
u
b
l
i
c

I
E
n
u
m
e
r
a
b
l
e
<
J
o
b
>

C
u
r
r
e
n
t
J
o
b
s
(
)

1
2

{

1
3

u
s
i
n
g

(
v
a
r

c
o
n
t
e
x
t

=

n
e
w

J
o
b
s
C
o
n
t
e
x
t
(
)
)

1
4

{

1
5

v
a
r

j
o
b
s

=

f
r
o
m

j
o
b

i
n

c
o
n
t
e
x
t
.
J
o
b
s

1
6

w
h
e
r
e

j
o
b
.
O
p
e
n
i
n
g
D
a
t
e

<

D
a
t
e
T
i
m
e
.
N
o
w

1
7

w
h
e
r
e

j
o
b
.
C
l
o
s
i
n
g
D
a
t
e

>

D
a
t
e
T
i
m
e
.
N
o
w

1
8

o
r
d
e
r
b
y

j
o
b
.
C
l
o
s
i
n
g
D
a
t
e

1
9

s
e
l
e
c
t

j
o
b
;

2
0

2
1

r
e
t
u
r
n

j
o
b
s
.
T
o
L
i
s
t
(
)
;

2
2

}

2
3

}

2
4

2
5

p
u
b
l
i
c

v
o
i
d

I
n
c
r
e
m
e
n
t
A
p
p
C
o
u
n
t
(
J
o
b

j
o
b
)

2
6

{

2
7

j
o
b
.
A
p
p
l
i
c
a
t
i
o
n
C
o
u
n
t
+
+
;

2
8

U
p
d
a
t
e
(
j
o
b
)
;

2
9

}

3
0

3
1

p
u
b
l
i
c

o
v
e
r
r
i
d
e

I
E
n
u
m
e
r
a
b
l
e
<
J
o
b
>

L
i
s
t
(
)

3
2

{

3
3

u
s
i
n
g

(
v
a
r

c
o
n
t
e
x
t

=

n
e
w

J
o
b
s
C
o
n
t
e
x
t
(
)
)

3
4

{

3
5

v
a
r

i
t
e
m
s

=

f
r
o
m

j
o
b

i
n

c
o
n
t
e
x
t
.
J
o
b
s

3
6

o
r
d
e
r
b
y

j
o
b
.
J
o
b
I
d

d
e
s
c
e
n
d
i
n
g

3
7

s
e
l
e
c
t

j
o
b
;

3
8

3
9

r
e
t
u
r
n

i
t
e
m
s
.
T
o
L
i
s
t
(
)
;

4
0

}

4
1

}

4
2

}

4
3

}

4
4

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
J
o
b
s
\
J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
\
R
e
p
o
s
i
t
o
r
i
e
s
\
R
e
p
o
s
i
t
o
r
y
B
a
s
e
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;

2
u
s
i
n
g

S
y
s
t
e
m
.
D
a
t
a
;

3
u
s
i
n
g

S
y
s
t
e
m
.
L
i
n
q
;

45
n
a
m
e
s
p
a
c
e

J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
.
R
e
p
o
s
i
t
o
r
i
e
s

6
{

7

p
u
b
l
i
c

c
l
a
s
s

R
e
p
o
s
i
t
o
r
y
B
a
s
e
<
T
>

w
h
e
r
e

T

:

c
l
a
s
s

8

{

9

p
u
b
l
i
c

R
e
p
o
s
i
t
o
r
y
B
a
s
e
(
)

1
0

{

1
1

/
/
_
c
o
n
t
e
x
t

=

n
e
w

J
o
b
s
C
o
n
t
e
x
t
(
)
;

1
2

/
/
_
s
e
t

=

_
c
o
n
t
e
x
t
.
S
e
t
<
T
>
(
)
;

1
3

}

1
4

1
5

p
u
b
l
i
c

v
i
r
t
u
a
l

v
o
i
d

C
r
e
a
t
e
(
T

e
n
t
i
t
y
)

1
6

{

1
7

u
s
i
n
g

(
v
a
r

c
o
n
t
e
x
t

=

n
e
w

J
o
b
s
C
o
n
t
e
x
t
(
)
)

1
8

{

1
9

c
o
n
t
e
x
t
.
S
e
t
<
T
>
(
)
.
A
d
d
(
e
n
t
i
t
y
)
;

2
0

c
o
n
t
e
x
t
.
S
a
v
e
C
h
a
n
g
e
s
(
)
;

2
1

}

2
2

}

2
3

2
4

p
u
b
l
i
c

v
i
r
t
u
a
l

T

G
e
t
(
i
n
t

i
d
)

2
5

{

2
6

u
s
i
n
g

(
v
a
r

c
o
n
t
e
x
t

=

n
e
w

J
o
b
s
C
o
n
t
e
x
t
(
)
)

2
7

{

2
8

r
e
t
u
r
n

c
o
n
t
e
x
t
.
S
e
t
<
T
>
(
)
.
F
i
n
d
(
i
d
)
;

2
9

}

3
0

}

3
1

3
2

p
u
b
l
i
c

v
i
r
t
u
a
l

I
E
n
u
m
e
r
a
b
l
e
<
T
>

L
i
s
t
(
)

3
3

{

3
4

u
s
i
n
g

(
v
a
r

c
o
n
t
e
x
t

=

n
e
w

J
o
b
s
C
o
n
t
e
x
t
(
)
)

3
5

{

3
6

v
a
r

i
t
e
m
s

=

f
r
o
m

T

i
n

c
o
n
t
e
x
t
.
S
e
t
<
T
>
(
)

3
7

s
e
l
e
c
t

T
;

3
8

3
9

r
e
t
u
r
n

i
t
e
m
s
.
T
o
L
i
s
t
(
)
;

4
0

}

4
1

}

4
2

4
3

p
u
b
l
i
c

v
i
r
t
u
a
l

v
o
i
d

U
p
d
a
t
e
(
T

e
n
t
i
t
y
)

4
4

{

4
5

u
s
i
n
g

(
v
a
r

c
o
n
t
e
x
t

=

n
e
w

J
o
b
s
C
o
n
t
e
x
t
(
)
)

4
6

{

4
7

c
o
n
t
e
x
t
.
S
e
t
<
T
>
(
)
.
A
t
t
a
c
h
(
e
n
t
i
t
y
)
;

4
8

c
o
n
t
e
x
t
.
E
n
t
r
y
(
e
n
t
i
t
y
)
.
S
t
a
t
e

=

E
n
t
i
t
y
S
t
a
t
e
.
M
o
d
i
f
i
e
d
;

4
9

c
o
n
t
e
x
t
.
S
a
v
e
C
h
a
n
g
e
s
(
)
;

5
0

}

5
1

}

5
2

}

5
3

}

5
4

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
J
o
b
s
\
J
o
b
s
.
U
I
.
W
e
b
\
C
o
n
t
r
o
l
l
e
r
s
\
A
p
p
l
y
C
o
n
t
r
o
l
l
e
r
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
W
e
b
.
M
v
c
;

3
u
s
i
n
g

J
o
b
s
.
B
u
s
i
n
e
s
s
L
o
g
i
c
.
A
b
s
t
r
a
c
t
;

4
u
s
i
n
g

J
o
b
s
.
B
u
s
i
n
e
s
s
L
o
g
i
c
.
E
x
c
e
p
t
i
o
n
s
;

5
u
s
i
n
g

J
o
b
s
.
D
a
t
a
A
c
c
e
s
s
.
E
n
t
i
t
i
e
s
;

6
u
s
i
n
g

J
o
b
s
.
U
I
.
W
e
b
.
M
o
d
e
l
s
.
A
p
p
l
y
;

78
n
a
m
e
s
p
a
c
e

J
o
b
s
.
U
I
.
W
e
b
.
C
o
n
t
r
o
l
l
e
r
s

9
{

1
0

p
u
b
l
i
c

c
l
a
s
s

A
p
p
l
y
C
o
n
t
r
o
l
l
e
r

:

C
o
n
t
r
o
l
l
e
r

1
1

{

1
2

p
r
o
t
e
c
t
e
d

I
A
p
p
l
i
c
a
n
t
s
B
L

_
a
p
p
l
i
c
a
n
t
B
L
;

1
3

p
r
o
t
e
c
t
e
d

I
J
o
b
s
B
L

_
j
o
b
s
B
L
;

1
4

p
r
o
t
e
c
t
e
d

I
A
p
p
l
i
c
a
t
i
o
n
B
L

_
a
p
p
l
i
c
a
t
i
o
n
B
L
;

1
5

1
6

p
u
b
l
i
c

A
p
p
l
y
C
o
n
t
r
o
l
l
e
r
(
I
A
p
p
l
i
c
a
n
t
s
B
L

a
p
p
l
i
c
a
n
t
B
L
,

I
J
o
b
s
B
L

j
o
b
s
B
L
,

I
A
p
p
l
i
c
a
t
i
o
n
B
L

a
p
p
l
i
c
a
t
i
o
n
B
L
)

1
7

{

1
8

_
a
p
p
l
i
c
a
n
t
B
L

=

a
p
p
l
i
c
a
n
t
B
L
;

1
9

_
j
o
b
s
B
L

=

j
o
b
s
B
L
;

2
0

_
a
p
p
l
i
c
a
t
i
o
n
B
L

=

a
p
p
l
i
c
a
t
i
o
n
B
L
;

2
1

}

2
2

2
3

/
/
/

<
s
u
m
m
a
r
y
>

2
4

/
/
/

B
e
g
i
n

a
n

a
p
p
l
i
c
a
t
i
o
n

2
5

/
/
/

<
/
s
u
m
m
a
r
y
>

2
6

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
i
d
"
>
J
o
b

I
D
<
/
p
a
r
a
m
>

2
7

/
/
/

<
r
e
t
u
r
n
s
>
<
/
r
e
t
u
r
n
s
>

2
8

p
u
b
l
i
c

A
c
t
i
o
n
R
e
s
u
l
t

B
e
g
i
n
(
i
n
t

i
d
)

2
9

{

3
0

V
i
e
w
B
a
g
.
J
o
b
I
d

=

i
d
;

3
1

r
e
t
u
r
n

V
i
e
w
(
)
;

3
2

}

3
3

3
4

/
/
/

<
s
u
m
m
a
r
y
>

3
5

/
/
/

C
r
e
a
t
e

a

n
e
w

a
p
p
l
i
c
a
n
t

3
6

/
/
/

<
/
s
u
m
m
a
r
y
>

3
7

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
i
d
"
>
J
o
b

I
D
<
/
p
a
r
a
m
>

3
8

/
/
/

<
r
e
t
u
r
n
s
>
<
/
r
e
t
u
r
n
s
>

3
9

p
u
b
l
i
c

A
c
t
i
o
n
R
e
s
u
l
t

N
e
w
A
p
p
l
i
c
a
n
t
(
i
n
t

i
d
)

4
0

{

4
1

r
e
t
u
r
n

V
i
e
w
(
)
;

4
2

}

4
3

4
4

/
/
/

<
s
u
m
m
a
r
y
>

4
5

/
/
/

S
a
v
e

a

n
e
w
l
y

c
r
e
a
t
e
d

a
p
p
l
i
c
a
n
t

4
6

/
/
/

<
/
s
u
m
m
a
r
y
>

4
7

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
i
d
"
>
J
o
b

I
D
<
/
p
a
r
a
m
>

4
8

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
a
p
p
l
i
c
a
n
t
"
>
A
p
p
l
i
c
a
n
t

d
e
t
a
i
l
s
<
/
p
a
r
a
m
>

4
9

/
/
/

<
r
e
t
u
r
n
s
>
<
/
r
e
t
u
r
n
s
>

5
0

[
H
t
t
p
P
o
s
t
]

5
1

[
V
a
l
i
d
a
t
e
A
n
t
i
F
o
r
g
e
r
y
T
o
k
e
n
]

5
2

p
u
b
l
i
c

A
c
t
i
o
n
R
e
s
u
l
t

N
e
w
A
p
p
l
i
c
a
n
t
(
i
n
t

i
d
,

A
p
p
l
i
c
a
n
t

a
p
p
l
i
c
a
n
t
)

5
3

{

5
4

/
/

R
e
t
u
r
n

t
h
e

f
o
r
m

a
g
a
i
n

i
f

t
h
e

m
o
d
e
l

i
s

i
n
v
a
l
i
d

5
5

i
f

(
!
M
o
d
e
l
S
t
a
t
e
.
I
s
V
a
l
i
d
)

5
6

r
e
t
u
r
n

V
i
e
w
(
)
;

5
7

5
8

/
/

T
r
y

t
o

c
r
e
a
t
e

t
h
e

a
p
p
l
i
c
a
n
t

5
9

t
r
y

6
0

{

6
1

_
a
p
p
l
i
c
a
n
t
B
L
.
C
r
e
a
t
e
(
a
p
p
l
i
c
a
n
t
)
;

6
2

S
e
s
s
i
o
n
[
"
a
p
p
l
i
c
a
n
t
I
d
"
]

=

a
p
p
l
i
c
a
n
t
.
A
p
p
l
i
c
a
n
t
I
d
;

6
3

r
e
t
u
r
n

R
e
d
i
r
e
c
t
T
o
A
c
t
i
o
n
(
"
Q
u
e
s
t
i
o
n
s
"
,

n
e
w

{

I
d

=

i
d

}
)
;

6
4

}

6
5

c
a
t
c
h

(
B
u
s
i
n
e
s
s
L
o
g
i
c
E
x
c
e
p
t
i
o
n

e
x
)

6
6

{

6
7

M
o
d
e
l
S
t
a
t
e
.
A
d
d
M
o
d
e
l
E
r
r
o
r
(
"
B
u
s
i
n
e
s
s
L
o
g
i
c
"
,

e
x
.
M
e
s
s
a
g
e
)
;

6
8

r
e
t
u
r
n

V
i
e
w
(
)
;

6
9

}

7
0

}

7
1

7
2

/
/
/

<
s
u
m
m
a
r
y
>

7
3

/
/
/

S
h
o
w

t
h
e

a
p
p
l
i
c
a
t
i
o
n

f
o
r
m

q
u
e
s
t
i
o
n
s

7
4

/
/
/

<
/
s
u
m
m
a
r
y
>

2
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
J
o
b
s
\
J
o
b
s
.
U
I
.
W
e
b
\
C
o
n
t
r
o
l
l
e
r
s
\
A
p
p
l
y
C
o
n
t
r
o
l
l
e
r
.
c
s

7
5

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
i
d
"
>
I
D

o
f

t
h
e

j
o
b
<
/
p
a
r
a
m
>

7
6

/
/
/

<
r
e
t
u
r
n
s
>
<
/
r
e
t
u
r
n
s
>

7
7

p
u
b
l
i
c

A
c
t
i
o
n
R
e
s
u
l
t

Q
u
e
s
t
i
o
n
s
(
i
n
t

i
d
)

7
8

{

7
9

/
/

I
f

t
h
e
r
e
'
s

n
o

a
p
p
l
i
c
a
n
t

I
D

i
n

t
h
e

s
e
s
s
i
o
n
,

r
e
d
i
r
e
c
t

t
o

t
h
e

s
t
a
r
t

8
0

i
f

(
S
e
s
s
i
o
n
[
"
a
p
p
l
i
c
a
n
t
I
d
"
]

=
=

n
u
l
l
)

8
1

r
e
t
u
r
n

R
e
d
i
r
e
c
t
T
o
A
c
t
i
o
n
(
"
B
e
g
i
n
"
,

n
e
w

{

I
d

=

i
d

}
)
;

8
2

8
3

r
e
t
u
r
n

V
i
e
w
(
)
;

8
4

}

8
5

8
6

/
/
/

<
s
u
m
m
a
r
y
>

8
7

/
/
/

S
a
v
e

t
h
e

a
p
p
l
i
c
a
t
i
o
n

f
o
r
m

a
n
s
w
e
r
s

8
8

/
/
/

<
/
s
u
m
m
a
r
y
>

8
9

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
i
d
"
>
I
D

o
f

t
h
e

j
o
b
<
/
p
a
r
a
m
>

9
0

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
a
p
p
l
i
c
a
t
i
o
n
"
>
A
p
p
l
i
c
a
t
i
o
n

d
a
t
a
<
/
p
a
r
a
m
>

9
1

/
/
/

<
r
e
t
u
r
n
s
>
<
/
r
e
t
u
r
n
s
>

9
2

[
V
a
l
i
d
a
t
e
A
n
t
i
F
o
r
g
e
r
y
T
o
k
e
n
]

9
3

[
H
t
t
p
P
o
s
t
]

9
4

p
u
b
l
i
c

A
c
t
i
o
n
R
e
s
u
l
t

Q
u
e
s
t
i
o
n
s
(
i
n
t

i
d
,

A
p
p
l
i
c
a
t
i
o
n

a
p
p
l
i
c
a
t
i
o
n
)

9
5

{

9
6

/
/

I
f

t
h
e
r
e
'
s

n
o

a
p
p
l
i
c
a
n
t

I
D

i
n

t
h
e

s
e
s
s
i
o
n
,

r
e
d
i
r
e
c
t

t
o

t
h
e

s
t
a
r
t

9
7

i
f

(
S
e
s
s
i
o
n
[
"
a
p
p
l
i
c
a
n
t
I
d
"
]

=
=

n
u
l
l
)

9
8

r
e
t
u
r
n

R
e
d
i
r
e
c
t
T
o
A
c
t
i
o
n
(
"
B
e
g
i
n
"
,

n
e
w

{

I
d

=

i
d

}
)
;

9
9

1
0
0

/
/

M
o
d
e
l

n
o
t

v
a
l
i
d
?

R
e
d
i
s
p
l
a
y

f
o
r
m

1
0
1

i
f

(
!
M
o
d
e
l
S
t
a
t
e
.
I
s
V
a
l
i
d
)

1
0
2

r
e
t
u
r
n

V
i
e
w
(
)
;

1
0
3

1
0
4

/
/

S
e
t

t
h
e

a
p
p
l
i
c
a
n
t

a
n
d

t
h
e

j
o
b

1
0
5

a
p
p
l
i
c
a
t
i
o
n
.
J
o
b

=

_
j
o
b
s
B
L
.
G
e
t
(
i
d
)
;

1
0
6

a
p
p
l
i
c
a
t
i
o
n
.
A
p
p
l
i
c
a
n
t

=

_
a
p
p
l
i
c
a
n
t
B
L
.
G
e
t
(
C
o
n
v
e
r
t
.
T
o
I
n
t
3
2
(
S
e
s
s
i
o
n
[
"
a
p
p
l
i
c
a
n
t
I
d
"
]
)
)
;

1
0
7

1
0
8

/
/

T
r
y

t
o

c
r
e
a
t
e

t
h
e

a
p
p
l
i
c
a
t
i
o
n

1
0
9

t
r
y

1
1
0

{

1
1
1

_
a
p
p
l
i
c
a
t
i
o
n
B
L
.
C
r
e
a
t
e
(
a
p
p
l
i
c
a
t
i
o
n
)
;

1
1
2

r
e
t
u
r
n

R
e
d
i
r
e
c
t
T
o
A
c
t
i
o
n
(
"
S
u
c
c
e
s
s
"
)
;

1
1
3

}

1
1
4

c
a
t
c
h

(
B
u
s
i
n
e
s
s
L
o
g
i
c
E
x
c
e
p
t
i
o
n

e
x
)

1
1
5

{

1
1
6

M
o
d
e
l
S
t
a
t
e
.
A
d
d
M
o
d
e
l
E
r
r
o
r
(
"
B
u
s
i
n
e
s
s
L
o
g
i
c
"
,

e
x
.
M
e
s
s
a
g
e
)
;

1
1
7

r
e
t
u
r
n

V
i
e
w
(
)
;

1
1
8

}

1
1
9

}

1
2
0

1
2
1

p
u
b
l
i
c

A
c
t
i
o
n
R
e
s
u
l
t

S
u
c
c
e
s
s
(
)

1
2
2

{

1
2
3

r
e
t
u
r
n

V
i
e
w
(
)
;

1
2
4

}

1
2
5

1
2
6

[
H
t
t
p
P
o
s
t
]

1
2
7

[
V
a
l
i
d
a
t
e
A
n
t
i
F
o
r
g
e
r
y
T
o
k
e
n
]

1
2
8

p
u
b
l
i
c

A
c
t
i
o
n
R
e
s
u
l
t

L
o
g
O
n
(
i
n
t

i
d
,

L
o
g
O
n
M
o
d
e
l

m
o
d
e
l
)

1
2
9

{

1
3
0

V
i
e
w
B
a
g
.
J
o
b
I
d

=

i
d
;

1
3
1

1
3
2

i
f

(
!
M
o
d
e
l
S
t
a
t
e
.
I
s
V
a
l
i
d
)

1
3
3

r
e
t
u
r
n

V
i
e
w
(
)
;

1
3
4

1
3
5

/
/

T
r
y

f
i
n
d

a
p
p
l
i
c
a
n
t

1
3
6

A
p
p
l
i
c
a
n
t

a
p
p
l
i
c
a
n
t

=

_
a
p
p
l
i
c
a
n
t
B
L
.
G
e
t
B
y
E
m
a
i
l
(
m
o
d
e
l
.
E
m
a
i
l
)
;

1
3
7

i
f

(
a
p
p
l
i
c
a
n
t

=
=

n
u
l
l
)

1
3
8

{

1
3
9

M
o
d
e
l
S
t
a
t
e
.
A
d
d
M
o
d
e
l
E
r
r
o
r
(
"
E
m
a
i
l
"
,

"
Y
o
u
r

e
m
a
i
l

a
d
d
r
e
s
s

o
r

p
a
s
s
w
o
r
d

w
a
s

i
n
c
o
r
r
e
c
t
"
)
;

1
4
0

r
e
t
u
r
n

V
i
e
w
(
)
;

1
4
1

}

1
4
2

1
4
3

i
f

(
!
_
a
p
p
l
i
c
a
n
t
B
L
.
V
a
l
i
d
a
t
e
P
a
s
s
w
o
r
d
(
a
p
p
l
i
c
a
n
t
,

m
o
d
e
l
.
P
a
s
s
w
o
r
d
)
)

1
4
4

{

1
4
5

M
o
d
e
l
S
t
a
t
e
.
A
d
d
M
o
d
e
l
E
r
r
o
r
(
"
P
a
s
s
w
o
r
d
"
,

"
Y
o
u
r

e
m
a
i
l

a
d
d
r
e
s
s

o
r

p
a
s
s
w
o
r
d

w
a
s

i
n
c
o
r
r
e
c
t
"
)
;

1
4
6

r
e
t
u
r
n

V
i
e
w
(
)
;

1
4
7

}

1
4
8

3
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
J
o
b
s
\
J
o
b
s
.
U
I
.
W
e
b
\
C
o
n
t
r
o
l
l
e
r
s
\
A
p
p
l
y
C
o
n
t
r
o
l
l
e
r
.
c
s

1
4
9

S
e
s
s
i
o
n
[
"
a
p
p
l
i
c
a
n
t
I
d
"
]

=

a
p
p
l
i
c
a
n
t
.
A
p
p
l
i
c
a
n
t
I
d
;

1
5
0

r
e
t
u
r
n

R
e
d
i
r
e
c
t
T
o
A
c
t
i
o
n
(
"
U
p
d
a
t
e
A
p
p
l
i
c
a
n
t
"
,

n
e
w

{

I
d

=

i
d

}
)
;

1
5
1

}

1
5
2

1
5
3

p
u
b
l
i
c

A
c
t
i
o
n
R
e
s
u
l
t

U
p
d
a
t
e
A
p
p
l
i
c
a
n
t
(
i
n
t

i
d
)

1
5
4

{

1
5
5

A
p
p
l
i
c
a
n
t

a
p
p
l
i
c
a
n
t

=

_
a
p
p
l
i
c
a
n
t
B
L
.
G
e
t
(
C
o
n
v
e
r
t
.
T
o
I
n
t
3
2
(
S
e
s
s
i
o
n
[
"
a
p
p
l
i
c
a
n
t
I
d
"
]
)
)
;

1
5
6

r
e
t
u
r
n

V
i
e
w
(
a
p
p
l
i
c
a
n
t
)
;

1
5
7

}

1
5
8

1
5
9

[
H
t
t
p
P
o
s
t
]

1
6
0

[
V
a
l
i
d
a
t
e
A
n
t
i
F
o
r
g
e
r
y
T
o
k
e
n
]

1
6
1

p
u
b
l
i
c

A
c
t
i
o
n
R
e
s
u
l
t

U
p
d
a
t
e
A
p
p
l
i
c
a
n
t
(
i
n
t

i
d
,

[
B
i
n
d
(
E
x
c
l
u
d
e
=
"
A
p
p
l
i
c
a
n
t
I
d
"
)
]
A
p
p
l
i
c
a
n
t

a
p
p
l
i
c
a
n
t
C
h
a
n
g
e
s
)

1
6
2

{

1
6
3

/
/

I
f

t
h
e
r
e
'
s

n
o

a
p
p
l
i
c
a
n
t

I
D

i
n

t
h
e

s
e
s
s
i
o
n
,

r
e
d
i
r
e
c
t

t
o

t
h
e

s
t
a
r
t

1
6
4

i
f

(
S
e
s
s
i
o
n
[
"
a
p
p
l
i
c
a
n
t
I
d
"
]

=
=

n
u
l
l
)

1
6
5

r
e
t
u
r
n

R
e
d
i
r
e
c
t
T
o
A
c
t
i
o
n
(
"
B
e
g
i
n
"
,

n
e
w

{

I
d

=

i
d

}
)
;

1
6
6

1
6
7

/
/

W
e

n
e
e
d

t
o

l
o
a
d

t
h
e

o
l
d

a
p
p
l
i
c
a
n
t

(
s
o

i
t
'
s

t
r
a
c
k
e
d

b
y

E
n
t
i
t
y

F
r
r
a
m
e
w
o
r
k
)

a
n
d

c
o
p
y

1
6
8

/
/

o
v
e
r

a
l
l

t
h
e

m
o
d
i
f
i
e
d

d
e
t
a
i
l
s

1
6
9

A
p
p
l
i
c
a
n
t

o
l
d
A
p
p
l
i
c
a
n
t

=

_
a
p
p
l
i
c
a
n
t
B
L
.
G
e
t
(
C
o
n
v
e
r
t
.
T
o
I
n
t
3
2
(
S
e
s
s
i
o
n
[
"
a
p
p
l
i
c
a
n
t
I
d
"
]
)
)
;

1
7
0

a
p
p
l
i
c
a
n
t
C
h
a
n
g
e
s
.
P
a
s
s
w
o
r
d

=

o
l
d
A
p
p
l
i
c
a
n
t
.
P
a
s
s
w
o
r
d
;

1
7
1

1
7
2

/
/

R
e
t
u
r
n

t
h
e

f
o
r
m

a
g
a
i
n

i
f

t
h
e

m
o
d
e
l

i
s

i
n
v
a
l
i
d

1
7
3

i
f

(
!
M
o
d
e
l
S
t
a
t
e
.
I
s
V
a
l
i
d
)

1
7
4

r
e
t
u
r
n

V
i
e
w
(
a
p
p
l
i
c
a
n
t
C
h
a
n
g
e
s
)
;

1
7
5

1
7
6

U
p
d
a
t
e
M
o
d
e
l
(
o
l
d
A
p
p
l
i
c
a
n
t
)
;

1
7
7

1
7
8

/
/

T
r
y

t
o

u
p
d
a
t
e

t
h
e

a
p
p
l
i
c
a
n
t

1
7
9

t
r
y

1
8
0

{

1
8
1

_
a
p
p
l
i
c
a
n
t
B
L
.
U
p
d
a
t
e
(
o
l
d
A
p
p
l
i
c
a
n
t
)
;

1
8
2

r
e
t
u
r
n

R
e
d
i
r
e
c
t
T
o
A
c
t
i
o
n
(
"
Q
u
e
s
t
i
o
n
s
"
,

n
e
w

{

I
d

=

i
d

}
)
;

1
8
3

}

1
8
4

c
a
t
c
h

(
B
u
s
i
n
e
s
s
L
o
g
i
c
E
x
c
e
p
t
i
o
n

e
x
)

1
8
5

{

1
8
6

M
o
d
e
l
S
t
a
t
e
.
A
d
d
M
o
d
e
l
E
r
r
o
r
(
"
B
u
s
i
n
e
s
s
L
o
g
i
c
"
,

e
x
.
M
e
s
s
a
g
e
)
;

1
8
7

r
e
t
u
r
n

V
i
e
w
(
a
p
p
l
i
c
a
n
t
C
h
a
n
g
e
s
)
;

1
8
8

}

1
8
9

}

1
9
0

}

1
9
1

}

1
9
2

Security
Research Report

Research Report – Security

Page 2 of 14

Research Report – Security

1 Abstract
This report will explain the various security issues that are common in today’s web applications (such

as SQL injection, XSS and XSRF attacks), give some examples of the vulnerabilities, and how they

could be prevented. I’ve had experience developing web applications for a relatively long time, and

have read a large amount of literature pertaining to application security to prepare this report.

2 Introduction
Security is a very important issue for ALL enterprise applications. Users are trusting you with their

data, so you should put some effort into protecting the integrity of said data (and, depending on the

situation, you may be legally obliged to). As demonstrated by Sony recently1, even software systems

by large companies can be affected by security issues. Unfortunately, it is far too common to see

major security holes in applications, caused by small issues, or bad code that is overlooked during

development and code reviews. A lot of these security issues are issues which could be resolved very

easily by knowledge of the major issues affecting applications.

In this research report, I will briefly talk about some important security aspects of modern

applications, as well as some of the most common security issues, and how they can be avoided.

1
 See http://www.theage.com.au/world/gamers-details-stolen-in-sony-security-breach-20110427-1dwyr.html

and http://arstechnica.com/tech-policy/news/2011/06/sony-hacked-yet-again-plaintext-passwords-posted.ars

http://www.theage.com.au/world/gamers-details-stolen-in-sony-security-breach-20110427-1dwyr.html
http://arstechnica.com/tech-policy/news/2011/06/sony-hacked-yet-again-plaintext-passwords-posted.ars

Research Report – Security

Page 3 of 14

Table of Contents
1 Abstract ... 2

2 Introduction .. 2

3 Passwords ... 4

3.1 Hashing .. 4

3.2 Salt .. 5

3.2.1 System-wide salt ... 5

3.2.2 Per-user salt .. 6

4 Configuration file encryption .. 7

5 SQL Injection ... 8

5.1 Blind SQL injection .. 8

5.2 Direct SQL injection ... 9

5.3 Prevention ... 10

5.3.1 Prepared statements .. 10

5.3.2 Stored procedures... 10

5.3.3 Newer technologies .. 10

6 Cross-Site Scripting ... 10

6.1 Prevention ... 11

6.1.1 HTML encoding ... 11

6.1.2 HTML Sanitisation ... 12

7 Cross-Site Request Forgery ... 12

7.1 Prevention ... 12

8 Conclusion ... 13

9 References .. 14

Research Report – Security

Page 4 of 14

3 Passwords
Most modern systems store user credentials in some form, in order to authenticate that the user

accessing the system is a valid user (and that they are who they say they are). Although there are

many newer technologies (like OpenID and single sign-on systems), today the most common form of

user credentials are usernames and passwords stored directly in your database. This is because they

are easy to store, and there is no reliance on any third-party systems.

Storing these credentials correctly is an important step to ensuring your system has good security.

The main method of ensuring password security is hashing the passwords.

3.1 Hashing
To discuss hashing, we must first discuss encryption. Encryption usually involves using a “key” to

protect data, rendering it readable only if you have that key available, and you know the algorithm

that was used to encrypt the data. However keys are not always used. A very simple example of

encryption is the ROT13 algorithm. ROT13 simply “rotates” every alphabetic character 13 characters

(Wikipedia 2011b). ROT13 is not secure at all, but does demonstrate what encryption is – “undoing”

or reversing encryption is possible, you just need to know the algorithm that was used (and the key

that was used, if the algorithm uses a key).

Hashing is a lot like encryption, except it is one-way. A hash is a unique string of characters that

cannot be easily reversed back into a password. A simple hashing algorithm might be to get the

ASCII value of every character, and add them together (to get a total). The total would be the hash of

the string. Obviously, you can try guessing the original password, but you cannot retrieve the

original password from this “hash” value. Again, this is a very insecure example, but is sufficient to

describe what a hash is. In real scenarios, hashing algorithms are considerably more secure.

With secure hashing algorithms, each string has a unique hash, and even a very small change in the

password produces a significant change in the hash output (see Figure 1 below). There are several

well-known hashing algorithms, including MD5 and SHA1. For best security, it’s suggested to use a

well-known hashing algorithm, as these have been tested for security. A common security issue is to

make your own hashing algorithm and assume it’s more secure, as it’s custom. Unless you’ve studied

cryptography in great detail, it’s almost certain that a proper hashing algorithm is significantly more

secure than your own.

Figure 1: Example of the input and output to a hashing algorithm. Notice the addition of an exclamation mark to the
string changes the hash significantly

Research Report – Security

Page 5 of 14

The benefit of using a hash to protect user passwords is that if an attacker ever gets access to your

database, they never see your user’s passwords, just the hash for their passwords. This ensures the

passwords are safe. When validating user credentials, you simply re-hash their password, and check

if the hashes match. If they don’t, the password is incorrect

3.2 Salt
There is one main vulnerability with hashing: Hashing the same string will always return the same

hash. If you search Google for “3e25960a79dbc69b674cd4ec67a72c62” (the MD5 hash of “Hello

world”), you’ll find several results referring to it. This is by design – You need to be able to rehash

the password in order to check whether the user-entered password was correct. This can be

exploited to make a very large list of the hashes of all the most common passwords, and using this

precomputed table to look up the hashes of common passwords from a database. This is known as a

“rainbow table”, and is a common threat to password hashing (Oechslin 2003).

To be immune from rainbow table attacks, an approach known as “salting” can be used. “Salting” is

basically adding a unique string to the password before hashing it. So, instead of hashing the

password, you hash the password combined with a salt string in some way. The salt string can be

added to the beginning, the end, or somewhere in the middle of the password. As long as you’re

consistent, it doesn’t matter where the salt is added. Since the input string before hashing is now

significantly longer and won’t be a dictionary word (see Figure 2 below), this reduces the usefulness

of rainbow tables.

There are two main ways to use salting:

3.2.1 System-wide salt

The first is to have a single system-wide salt. This is often specified in a configuration file in the

system. Even this basic level of salting increases security quite a lot. Without a salt, an attacker only

needs access to your database to try and reverse your user’s passwords (either via rainbow tables,

or brute force). When a system-wide salt is used, the attacker also needs access to your file system

(as the salt is stored in a configuration file).

Figure 2: Example of input/output for hashing algorithm when a single salt is used

A simple example of a system-wide hash in C# would be something like this:

1 public class PasswordHasher

2 {

3 protected const string PASSWORD_SALT = "s@lt!sg0oDf0rY0u";

4

5 public static string HashPassword(string password)

6 {

7 // This is the important bit - Add the salt to the password!

8 string saltedPassword = password + PASSWORD_SALT;

9

10 HashAlgorithm hasher = new SHA256Managed();

Research Report – Security

Page 6 of 14

11 byte[] hashBytes = hasher.ComputeHash(Encoding.ASCII.GetBytes(saltedPassword));

12 return Convert.ToBase64String(hashBytes);

13 }

14 }

This has already added quite a bit of security to the password hashing. However, if an attacker does

gain access to both the database and the file system, they can find your salting algorithm and create

a rainbow table that uses it. Additionally, if two users are using the same password, their hashes will

still be identical. Using a per-user hash solves these two issues.

3.2.2 Per-user salt

An even better approach to salting is to have a per-user salt in addition to the system-wide salt (see

Figure 3 below). For example, put the system-wide salt at the end of the password, and the per-user

salt at the beginning of the password. The result of this is that each user’s password hash will be

different, even if their passwords are identical. Since the hashing algorithm is now unique for every

single user, rainbow tables are rendered useless. At best, a rainbow table would only be able to

decode the password of a single user (although this is very unlikely due to the salting).

Figure 3: Example of input/output for a hashing algorithm when two salts are used

An example of this in C# might be something like the following:

1 public class PasswordHasher

2 {

3 protected const string PASSWORD_SALT = "s@lt!sg0oDf0rY0u";

4

5 public static string HashPassword(string username, string password)

6 {

7 HashAlgorithm hasher = new SHA256Managed();

8

9 // Hash username to use as a salt

10 byte[] usernameBytes = hasher.ComputeHash(Encoding.ASCII.GetBytes(username));

11 string hashedUsername = Convert.ToBase64String(usernameBytes);

12

13 // Add hashed username as well as "system-wide" salt

14 string saltedPassword = password + hashedUsername + PASSWORD_SALT;

15

16 byte[] hashBytes = hasher.ComputeHash(Encoding.ASCII.GetBytes(saltedPassword));

17 return Convert.ToBase64String(hashBytes);

18 }

19 }

First the username is hashed normally (lines 10-11), and the hash of the username is then used to

salt the password (line 14).

Research Report – Security

Page 7 of 14

Of course, this is just a very simple example. In a live environment, you would most likely generate a

random salt value for each user, and store this in the database in the user’s row. If you’re extra

paranoid about security, you may use column encryption in SQL Server to encrypt the salt column.

This is not necessary most of the time, however. Just using a salt is already significantly more secure

than normal hashing, which is itself significantly more secure than storing passwords in plaintext.

4 Configuration file encryption
Often, configuration files contain sensitive data such as connection strings for databases, and salts

for passwords (as mentioned in section 3.2 above). One major security issue is the exposure of

sensitive information. This recently happened to microblogging website Tumblr – Their main

configuration file leaked due to a mistyped PHP tag2. If a configuration file is leaked, sensitive

information such as database and API passwords can fall into the hands of hackers.

 One method to protect this sensitive data is to use configuration file encryption. Configuration file

encryption allows you to encrypt certain sections of the configuration file (Web.config). It is built in

to ASP.NET 2.0 and higher (Prosise 2005), which means it can be used on any ASP.NET hosting

provider and no additional components are required to use it.

Encryption is done using the machine key, which is unique per computer. Configuration files

encrypted on one computer can only be decrypted on that same computer. This means that even if

your configuration file is stolen, the attacker will not be able to decrypt it (Burnett & Foster 2004).

Configuration file encryption is very simple to do. For this example, I’ll use the following appSettings

section:

<?xml version="1.0"?>

<configuration>

 <system.web>

 <compilation debug="true" targetFramework="4.0" />

 </system.web>

 <appSettings>

 <add key="Message" value="Hello World!" />

 </appSettings>

</configuration>

The “Message” value can be used from an ASP.NET WebForms page like this:

_message.Text = ConfigurationSettings.AppSettings["Message"];

To encrypt the appSettings section of the above configuration file, you simply need to run the

following command in the directory of the website:

aspnet_regiis -pef appSettings . -prov DataProtectionConfigurationProvider

This will encrypt the file and should display a “Suceeded!” message. Note: If you don’t have

command-line access (for example, if it is on a shared web host), you can instead create your own

application which uses the encryption APIs to encrypt the config file.

On my machine, the above configuration file now looks like this:

2
 http://www.reddit.com/r/PHP/comments/g70iy/mistyped_tag_leads_to_exposure_of_tumblr_db/

http://www.reddit.com/r/PHP/comments/g70iy/mistyped_tag_leads_to_exposure_of_tumblr_db/

Research Report – Security

Page 8 of 14

<?xml version="1.0"?>

<configuration>

 <system.web>

 <compilation debug="true" targetFramework="4.0" />

 </system.web>

 <appSettings configProtectionProvider="DataProtectionConfigurationProvider">

 <EncryptedData>

 <CipherData>

<CipherValue>AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAAY2Rl9c3220iZSpoj4yBNrgQAAAACAAAAAAAQZgAAAAEAACAAAADrPnysT

qPo/QtjqlOv2ElOQnTk6/iX6LxcD67mJH0hcQAAAAAOgAAAAAIAACAAAAAc/2zcILuMiqq/oMp58rCSE4dCindBXPW9fcp+48Z8VKA

AAAClPRNzGHxbG2mfUAfjIoYud4T0NxD19dLtxSeaVaYQsU+twnAH2NpInDmipYilIWLLxjD7jI0T1ci3LgD28FNqpOX0dqsl+1wgp

qLZAdbOBizrq/aLQrETKmwKjVXvKVi918+BhFBM8EsC6ZFkPmba3E4I/RaBz7ir2/ijjLY0yI+e02WCHVcG9VD3amz5iCbvEythKfJ

w/L1cMbnQucQBQAAAAKJ1dXaQ1vnl+0I52thLqz4mF6HzosvJMKFPvN2JDhcM1jN+wxsWSph8W9CIDmPD+mJvlsJ+EpzL5bqYoZZBH

MA=</CipherValue>

 </CipherData>

 </EncryptedData>

 </appSettings>

</configuration>

As you can see, the raw value is no longer visible – It has been encrypted. ASP.NET knows how to

handle encrypted configuration files, and will automatically decrypt the configuration data when you

access the website. In other words, no code changes are required at all!

5 SQL Injection
SQL injection used to be one of the most common security issues, and unfortunately, still is quite a

big issue. In fact, it is consistently the #1 most common issue in OWASP (Open Web Application

Security Project)’s list of top 10 web application security risks (OWASP 2010a). SQL injection is the

result of using a specific type of vulnerability that involves using one language being dynamically

constructed by another (in this case, it’s using SQL inside a programming language, most likely C# in

our case). Incorrect escaping of user-supplied data can lead to vulnerabilities in the formed SQL

string, and arbitrary user-supplied SQL being executed.

There are several different types of SQL injection, including:

5.1 Blind SQL injection
Blind SQL injection is when you can inject arbitrary SQL, but can’t use it to view any rows from the

database (Halfond, Viegas & Orso 2006). The blind SQL injection example (located in the portfolio

appendices, and in the “SqlInjection” folder on the provided CD) demonstrates one type of blind SQL

injection. The vulnerable code is using the following method call to generate the SQL for validating a

user’s username and password:

string.Format(@"

 SELECT COUNT(*)

 FROM Users

 WHERE username = '{0}' AND password = '{1}'", username, password),

The username and password are being added to the query unmodified (let’s ignore the issue that

the password is not encrypted for now!). On the surface, this appears to work correctly, with invalid

users being rejected, and valid users being allowed in:

Research Report – Security

Page 9 of 14

Username: blah

Password: foo

Invalid username or password!

Username: admin

Password: p@ssw0rd

Welcome, admin!

However, the code is easily exploited with a specially-crafted username and password:

Username: admin

Password: ' OR '1'='1

Welcome, admin!

The user has just logged in without knowing the password for the “admin” account! But what

happened, exactly? When the query was generated, it became the following:

SELECT COUNT(*) FROM Users WHERE username = 'admin' AND password = '' OR '1'='1'

Because 1 will always equal 1 (and OR has a higher precedence than AND), the password check is

being totally bypassed!

5.2 Direct SQL injection
Direct or “normal” SQL injection is similar to blind SQL injection, except you can actually see the

result of the injected query (i.e. rows are returned). This is often the type of SQL injection

vulnerability found on listing pages (grid pages). These are often more severe than blind SQL

injection vulnerabilities, as they can reveal sensitive data from the database (via injection of UNION

queries).

A simple example is shown in the “DirectSqlInjection” code (in the appendices, and on the provided

CD). In the example, the vulnerability is almost identical to the vulnerability in the “Blind SQL

injection” section above – User-supplied data is being used without sanitisation. The program does

work correctly:

Select type: phone

Mozart 7 by HTC (ID = 1)

Desire by HTC (ID = 2)

iPhone 3Gs by Apple (ID = 3)

iPhone 4 by Apple (ID = 4)

But it also allows SQL injection!

Select type: blah' UNION SELECT '1','1','test

test by 1 (ID = 1)

This is a very simple example of “union injection”. Once an SQL injection hole of this variety is found,

it can be used to retrieve any data from the database that the database user has access to (Anley

2002). A lot of insecure sites run as the “sa” user, which gives you full administrative access to the

database. Using UNION queries can be used to retrieve information about the database schema,

including listing all the tables in the database. This is done via the inbuilt “information_schema” or

“sys” views:

Select type: blah' UNION SELECT '1','1',table_name FROM information_schema.table

s --

Gadget by 1 (ID = 1)

Research Report – Security

Page 10 of 14

GadgetType by 1 (ID = 1)

Manufacturer by 1 (ID = 1)

It’s even possible to get a list of all the other databases on the server, via the sys.databases view!

5.3 Prevention
Fortunately, prevention of all SQL injection attacks is very simple. SQL injection is really only an issue

when dynamically constructing SQL yourself. Hence, there are several solutions:

5.3.1 Prepared statements

Prepared statements are SQL statements that have “placeholders” for all user-supplied arguments.

As the arguments are specified separately from the SQL statements themselves, the database

system knows how to correctly handle them (as it knows that they’re all user-supplied inputs), and

does all the required escaping. Using ADO.NET, this can be achieved using the DbCommand class3, as

shown in the fixed blind SQL injection example.

5.3.2 Stored procedures

Stored procedures are like functions in a normal programming language. Like ordinary functions or

methods, they accept parameters for user-supplied data. Much like prepared statements, the

database system knows how to handle these and escape them correctly when used in SQL

statements.

5.3.3 Newer technologies

Using basically any newer database technology is also a mitigation technique for SQL injection

attacks. Technologies that abstract writing of the SQL away from the user (e.g. Entity Framework,

LINQ to SQL, NHibernate, etc.) are not vulnerable to SQL injection attacks, as they properly handle

user input. The backend code for these technologies will commonly use prepared statements,

ensuring parameters are escaped correctly.

6 Cross-Site Scripting
Cross-Site Scripting (XSS) involves insertion

of arbitrary HTML tags (such as <script> or

<iframe> tags) in the page, and is the result

of displaying user-supplied data on the

page without “encoding” it.

Generally, XSS holes result are caused by

using user input (for example, query string

or form parameters) without sanitising

them. When an XSS hole is present, a

malicious user is able to inject their own

HTML into the page.

The OWASP project mentions that “XSS is the most prevalent web application security flaw” (2010b),

because it is quite easy to accidentally introduce an XSS hole into your application. XSS holes have

3
 http://msdn.microsoft.com/en-us/library/system.data.common.dbcommand.aspx

Figure 4: Example of an XSS hole in Amazon.com, with an
<iframe> being injected. Credit: XSSed.com

http://msdn.microsoft.com/en-us/library/system.data.common.dbcommand.aspx

Research Report – Security

Page 11 of 14

previously been found on large sites such as MySpace, eBay, Amazon, McAfee, American Express,

and many more (XSSed.com 2011).

A simple example is the following ASP.NET code:

<p>Hello <%= Request.QueryString["name"] %></p>

 This code outputs the “name” querystring parameter to the page. It is designed to be used by

accessing the page with a URL similar to Filename.aspx?name=Daniel, which will work as expected.

However, the page is not doing any validation or sanitisation of the input. If you go to

Filename.aspx?name=<script>alert('Hello World!')</script>, the script tag will be written to the

page, causing an alert with the text “Hello World” to appear:

<p>Hello <script>alert('Hello World!')</script></p>

This is just a harmless example, but more severe hacks can definitely be done. One of the most

common attacks done via XSS is cookie stealing. A script can be injected that reads document.cookie

(this is the cookie in JavaScript) and transmits it to the attacker’s server (Zuchlinski 2003). Depending

on the server-side session security, the attacker might be able to log in as you using only your

cookie!

6.1 Prevention
There are several mitigation techniques for cross-site scripting. The simplest solution is to simply

HTML encode any user-supplied data that is displayed on the page.

6.1.1 HTML encoding

HTML encoding is basically the transformation of special HTML characters (like angle brackets < >)

into “safe” characters, by using HTML encoding. For example, < becomes < and > becomes >.

The encoded versions don’t have any special meaning in HTML, and hence they just display as

normal characters.

The original way to safely display user-supplied data in ASP.NET was to call Server.HtmlEncode

manually:

<p>Hello <%= Server.HtmlEncode(Request.QueryString["name"]) %></p>

This works, but it’s a bit verbose, and developers can easily forget to include the HtmlEncode call

(leaving the web application open to Cross-Site Scripting) . In ASP.NET 4.0, a new syntax was added

to make this easier (Guthrie 2010b). Instead of calling Server.HtmlEncode manually, you can simply

use this syntax:

<p>Hello <%: Request.QueryString["name"] %></p>

And the text will automatically be HTML encoded.

The above examples all use the ASP.NET web forms “view engine” (used by ASP.NET web forms, and

previous versions of ASP.NET MVC). ASP.NET MVC 3 comes with a new view engine called “Razor”.

This new view engine automatically encodes all outputted content by default (Guthrie 2010a),

similar to the “<%:” tag in ASP.NET web forms 4.0. The equivalent to the above using Razor would

be:

Research Report – Security

Page 12 of 14

<p>Hello @Request.QueryString["name"]</p>

6.1.2 HTML Sanitisation

HTML escaping is not appropriate in all situations. For example, if you are writing a blog system, you

might want to allow people to use a subset of HTML in comments. In these cases, instead of

encoding all HTML, you’d instead cleanse or sanitise the HTML – Keep any wanted HTML, and

remove the rest. Generally, this is done by having a whitelist. Any HTML tags not in the whitelist are

stripped from the text (Ter Louw & Venkatakrishnan 2009). One library that does this is the

Microsoft XSS library, but there are many others. Another approach would be to implement

sanitisation yourself, using a HTML parsing library such as the HTML Agility Pack4

7 Cross-Site Request Forgery
Cross-Site Request Forgery (XSRF) is somewhat similar to XSS (and XSS can be used as an attack

vector). Essentially, XSRF is when another site transmits unauthorised commands to your website.

The attack works by including a link, script or image in a page that “accesses a site to which the user

is known (or is supposed) to have been authenticated” (Wikipedia 2011a).

While the HTTP standards state that GET requests are “safe”, idempotent and should not cause any

side effects, they are quite often still used for requests that modify data. If your site uses GET

requests in this manner, and you do not have any security tokens in the URL, you are vulnerable to

XSRF attacks. A simple example would be a URI like Delete.aspx?ID=123. If Delete.aspx does not

show any “Are you sure you want to delete this item?” verification message, an attacker could

simply create a specially-crafted image tag that hits this URL:

Whenever someone that is authenticated on your site hits the attackers site, the tag will

request that URL from your server. Since the user is logged in to your site, the request will succeed

and item ID 123 will be deleted!

However, just using POST requests does not automatically protect you from XSRF attacks. Some

attack vectors (e.g. using tags as mentioned above) are prevented; however, a malicious script

can simply create an invisible form and post it to your page.

7.1 Prevention
Prevention of XSRF attacks is quite easy. One of the most common methods of XSRF prevention is to

have a hidden, random, user-specific “token” (Shiflett 2004). Store the token in the session (or

encrypted in a cookie), and also include it as one of the form fields (as a hidden value). When you

validate the form submission, also validate that the token is correct (the one in the form post

matches the one you have stored). Since the attacking site can’t possibly know the correct token

value, it can’t send a valid request to your page.

Fortunately, in most modern web development frameworks you do not need to code this manually,

and the ASP.NET MVC framework is no exception. Using XSRF protection in ASP.NET MVC is very

simple. First, you need to include the “token” value in your form:

4
 http://htmlagilitypack.codeplex.com/

http://htmlagilitypack.codeplex.com/

Research Report – Security

Page 13 of 14

@Html.AntiForgeryToken() // For a Razor view

<%= Html.AntiForgeryToken() ?> // For standard ASP.NET views

Second, you need to decorate your action method with the “ValidateAntiForgeryToken” attribute:

[ValidateAntiForgeryToken]

[HttpPost]

public ActionResult DoSomething(StuffViewModel stuff)

This is all you need to do! Once this is done, ASP.NET will handle creating and validating the anti-

forgery token. If the token is not found in the form post, an exception will be thrown.

8 Conclusion
Some of the most common security issues (such as SQL injection, XSS and XSRF attacks) account for

the large majority of security issues in today’s web applications. These can all be overcome relatively

easily via common sense, knowledge of the issues, and proper testing of your application. While not

directly security issues as such, password hashing and configuration file encryption are important to

ensure the confidentiality of your data (especially in case a security issue is found!).

There are many more security issues in today’s web applications – This report has only touched on a

few of the most common. With proper penetration testing, web applications can be assured of a

certain level of security, and you won’t end up like Sony! :-).

Research Report – Security

Page 14 of 14

9 References
Anley, C 2002, Advanced SQL injection in SQL Server applications, viewed 2011-05-19,
<http://sparrow.ece.cmu.edu/group/731-s11/readings/anley-sql-inj.pdf>.

Burnett, M & Foster, JC 2004, Hacking the code: ASP. NET web application security, Syngress Media
Inc, viewed 2011-05-21,

Guthrie, S 2010a, Introducing "Razor" - a new view engine for ASP.NET, viewed 2011-05-21,
<http://weblogs.asp.net/scottgu/archive/2010/07/02/introducing-razor.aspx>.

Guthrie, S 2010b, New <%: %> Syntax for HTML Encoding Output in ASP.NET 4 (and ASP.NET MVC 2),
viewed 2011-05-26, <http://weblogs.asp.net/scottgu/archive/2010/04/06/new-lt-gt-syntax-for-
html-encoding-output-in-asp-net-4-and-asp-net-mvc-2.aspx>.

Halfond, W, Viegas, J & Orso, A 2006, A classification of SQL-injection attacks and countermeasures,
Citeseer, viewed 2011-06-04,
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.2968&rep=rep1&type=pdf>.

Oechslin, P 2003, 'Making a faster cryptanalytic time-memory trade-off', Advances in Cryptology-
CRYPTO 2003, pp. 617-630,

OWASP 2010a, Open Web Application Security Project Top 10 Project, viewed 2011-05-19,
<https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project>.

OWASP 2010b, Top 10 2010 - Cross-Site Scripting (XSS), viewed 2011-05-21,
<https://www.owasp.org/index.php/Top_10_2010-A2>.

Prosise, J 2005, Five Undiscovered Features on ASP.NET 2.0, viewed 2011-05-30,
<http://msdn.microsoft.com/en-us/magazine/cc163849.aspx>.

Shiflett, C 2004, Cross-Site Request Forgeries, viewed 2011-05-28, <http://shiflett.org/articles/cross-
site-request-forgeries>.

Ter Louw, M & Venkatakrishnan, VN 2009, 'Blueprint: Robust Prevention of Cross-site Scripting
Attacks for Existing Browsers,' IEEE Computer Society,

Wikipedia 2011a, Cross-site request forgery - Wikipedia, The Free Encyclopedia, viewed 2011-05-28,
<http://en.wikipedia.org/wiki/Cross-site_request_forgery>.

Wikipedia 2011b, ROT13 - Wikipedia, The Free Encyclopedia, viewed 2011-05-27,
<http://en.wikipedia.org/wiki/ROT13>.

XSSed.com 2011, XSSed | Cross Site Scripting (XSS) attacks information and archive, viewed 2011-06-
05, <http://xssed.com/>.

Zuchlinski, G 2003, The Anatomy of Cross Site Scripting, viewed 2011-06-01, <http://www.net-
security.org/dl/articles/xss_anatomy.pdf>.

http://sparrow.ece.cmu.edu/group/731-s11/readings/anley-sql-inj.pdf%3e
http://weblogs.asp.net/scottgu/archive/2010/07/02/introducing-razor.aspx%3e
http://weblogs.asp.net/scottgu/archive/2010/04/06/new-lt-gt-syntax-for-html-encoding-output-in-asp-net-4-and-asp-net-mvc-2.aspx%3e
http://weblogs.asp.net/scottgu/archive/2010/04/06/new-lt-gt-syntax-for-html-encoding-output-in-asp-net-4-and-asp-net-mvc-2.aspx%3e
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.2968&rep=rep1&type=pdf%3e
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project%3e
http://www.owasp.org/index.php/Top_10_2010-A2%3e
http://msdn.microsoft.com/en-us/magazine/cc163849.aspx%3e
http://shiflett.org/articles/cross-site-request-forgeries%3e
http://shiflett.org/articles/cross-site-request-forgeries%3e
http://en.wikipedia.org/wiki/Cross-site_request_forgery%3e
http://en.wikipedia.org/wiki/ROT13%3e
http://xssed.com/%3e
http://www.net-security.org/dl/articles/xss_anatomy.pdf%3e
http://www.net-security.org/dl/articles/xss_anatomy.pdf%3e

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.

.
N
E
T
\
P
o
r
t
f
o
l
i
o
\
C
o
d
e
\
S
q
l
I
n
j
e
c
t
i
o
n
\
B
l
i
n
d
\
P
r
o
g
r
a
m
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
D
a
t
a
.
S
q
l
C
l
i
e
n
t
;

34
n
a
m
e
s
p
a
c
e

S
q
l
I
n
j
e
c
t
i
o
n

5
{

6

/
/
/

<
s
u
m
m
a
r
y
>

7

/
/
/

P
r
o
g
r
a
m

t
o

d
e
m
o
n
s
t
r
a
t
e

b
l
i
n
d

S
Q
L

i
n
j
e
c
t
i
o
n

v
u
l
n
e
r
a
b
i
l
i
t
i
e
s

a
n
d

h
o
w

t
h
e
y

c
a
n

b
e

a
v
o
i
d
e
d

8

/
/
/

<
/
s
u
m
m
a
r
y
>

9

c
l
a
s
s

P
r
o
g
r
a
m

1
0

{

1
1

p
r
o
t
e
c
t
e
d

c
o
n
s
t

s
t
r
i
n
g

C
O
N
N
E
C
T
I
O
N
_
S
T
R
I
N
G

=

@
"

1
2

D
a
t
a

S
o
u
r
c
e
=
D
A
N
I
E
L
-
L
A
P
T
O
P
2
\
S
Q
L
E
X
P
R
E
S
S
;
I
n
i
t
i
a
l

C
a
t
a
l
o
g
=
E
x
a
m
p
l
e
;

1
3

I
n
t
e
g
r
a
t
e
d

S
e
c
u
r
i
t
y
=
T
r
u
e
;
P
o
o
l
i
n
g
=
F
a
l
s
e
"
;

1
4

1
5

p
r
o
t
e
c
t
e
d

s
t
a
t
i
c

S
q
l
C
o
n
n
e
c
t
i
o
n

_
c
o
n
n
e
c
t
i
o
n
;

1
6

1
7

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)

1
8

{

1
9

C
o
n
n
e
c
t
T
o
D
a
t
a
b
a
s
e
(
)
;

2
0

2
1

s
t
r
i
n
g

u
s
e
r
n
a
m
e
;

2
2

d
o

2
3

{

2
4

C
o
n
s
o
l
e
.
W
r
i
t
e
(
"
U
s
e
r
n
a
m
e
:

"
)
;

2
5

u
s
e
r
n
a
m
e

=

C
o
n
s
o
l
e
.
R
e
a
d
L
i
n
e
(
)
;

2
6

C
o
n
s
o
l
e
.
W
r
i
t
e
(
"
P
a
s
s
w
o
r
d
:

"
)
;

2
7

s
t
r
i
n
g

p
a
s
s
w
o
r
d

=

C
o
n
s
o
l
e
.
R
e
a
d
L
i
n
e
(
)
;

2
8

i
f

(
V
u
l
n
e
r
a
b
l
e
C
h
e
c
k
(
u
s
e
r
n
a
m
e
,

p
a
s
s
w
o
r
d
)
)

2
9

/
/
i
f

(
F
i
x
e
d
C
h
e
c
k
(
u
s
e
r
n
a
m
e
,

p
a
s
s
w
o
r
d
)
)

3
0

{

3
1

b
r
e
a
k
;

3
2

}

3
3

3
4

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
I
n
v
a
l
i
d

u
s
e
r
n
a
m
e

o
r

p
a
s
s
w
o
r
d
!
"
)
;

3
5

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
)
;

3
6

3
7

}

w
h
i
l
e

(
t
r
u
e
)
;

3
8

3
9

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
W
e
l
c
o
m
e
,

{
0
}
!
"
,

u
s
e
r
n
a
m
e
)
;

4
0

C
o
n
s
o
l
e
.
R
e
a
d
K
e
y
(
)
;

4
1

}

4
2

4
3

p
r
o
t
e
c
t
e
d

s
t
a
t
i
c

v
o
i
d

C
o
n
n
e
c
t
T
o
D
a
t
a
b
a
s
e
(
)

4
4

{

4
5

_
c
o
n
n
e
c
t
i
o
n

=

n
e
w

S
q
l
C
o
n
n
e
c
t
i
o
n
(
C
O
N
N
E
C
T
I
O
N
_
S
T
R
I
N
G
)
;

4
6

_
c
o
n
n
e
c
t
i
o
n
.
O
p
e
n
(
)
;

4
7

}

4
8

4
9

5
0

/
/
/

<
s
u
m
m
a
r
y
>

5
1

/
/
/

C
h
e
c
k

u
s
e
r
n
a
m
e

a
n
d

p
a
s
s
w
o
r
d

a
r
e

v
a
l
i
d
.

V
u
l
n
e
r
a
b
l
e

t
o

S
Q
L

i
n
j
e
c
t
i
o
n
!

5
2

/
/
/

<
/
s
u
m
m
a
r
y
>

5
3

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
u
s
e
r
n
a
m
e
"
>
T
h
e

u
s
e
r
n
a
m
e
.
<
/
p
a
r
a
m
>

5
4

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
p
a
s
s
w
o
r
d
"
>
T
h
e

p
a
s
s
w
o
r
d
.
<
/
p
a
r
a
m
>

5
5

/
/
/

<
r
e
t
u
r
n
s
>
T
r
u
e

i
f

u
s
e
r

i
s

v
a
l
i
d
,

o
t
h
e
r
w
i
s
e

F
a
l
s
e
<
/
r
e
t
u
r
n
s
>

5
6

p
r
o
t
e
c
t
e
d

s
t
a
t
i
c

b
o
o
l

V
u
l
n
e
r
a
b
l
e
C
h
e
c
k
(
s
t
r
i
n
g

u
s
e
r
n
a
m
e
,

s
t
r
i
n
g

p
a
s
s
w
o
r
d
)

5
7

{

5
8

S
q
l
C
o
m
m
a
n
d

c
o
m
m
a
n
d

=

n
e
w

S
q
l
C
o
m
m
a
n
d
(

5
9

/
/

N
o
t
i
c
e
:

U
s
e
r
n
a
m
e

a
n
d

p
a
s
s
w
o
r
d

a
r
e

n
o
t

e
s
c
a
p
e
d
.

B
a
d
!

6
0

s
t
r
i
n
g
.
F
o
r
m
a
t
(
@
"

6
1

S
E
L
E
C
T

C
O
U
N
T
(
*
)

6
2

F
R
O
M

U
s
e
r
s

6
3

W
H
E
R
E

u
s
e
r
n
a
m
e

=

'
{
0
}
'

A
N
D

p
a
s
s
w
o
r
d

=

'
{
1
}
'
"

6
4

,

u
s
e
r
n
a
m
e
,

p
a
s
s
w
o
r
d
)
,

6
5

_
c
o
n
n
e
c
t
i
o
n
)
;

6
6

6
7

/
/

N
a
i
v
e

u
s
e
r

c
h
e
c
k
:

R
e
t
u
r
n

"
T
r
u
e
"

i
f

w
e
'
v
e

g
o
t

a

r
o
w

i
n

t
h
e

r
e
s
u
l
t
.

6
8

/
/

S
u
r
e
l
y

t
h
a
t

m
e
a
n
s

t
h
e

c
r
e
d
e
n
t
i
a
l
s

a
r
e

v
a
l
i
d
!

.
.
.

6
9

r
e
t
u
r
n

(
i
n
t
)

c
o
m
m
a
n
d
.
E
x
e
c
u
t
e
S
c
a
l
a
r
(
)

!
=

0
;

7
0

}

7
1

7
2

/
/
/

<
s
u
m
m
a
r
y
>

7
3

/
/
/

C
h
e
c
k

u
s
e
r
n
a
m
e

a
n
d

p
a
s
s
w
o
r
d

a
r
e

v
a
l
i
d
.

N
O
T

v
u
l
n
e
r
a
b
l
e

t
o

S
Q
L

i
n
j
e
c
t
i
o
n
!

7
4

/
/
/

<
/
s
u
m
m
a
r
y
>

2
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.

.
N
E
T
\
P
o
r
t
f
o
l
i
o
\
C
o
d
e
\
S
q
l
I
n
j
e
c
t
i
o
n
\
B
l
i
n
d
\
P
r
o
g
r
a
m
.
c
s

7
5

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
u
s
e
r
n
a
m
e
"
>
T
h
e

u
s
e
r
n
a
m
e
.
<
/
p
a
r
a
m
>

7
6

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
p
a
s
s
w
o
r
d
"
>
T
h
e

p
a
s
s
w
o
r
d
.
<
/
p
a
r
a
m
>

7
7

/
/
/

<
r
e
t
u
r
n
s
>
T
r
u
e

i
f

u
s
e
r

i
s

v
a
l
i
d
,

o
t
h
e
r
w
i
s
e

F
a
l
s
e
<
/
r
e
t
u
r
n
s
>

7
8

p
r
o
t
e
c
t
e
d

s
t
a
t
i
c

b
o
o
l

F
i
x
e
d
C
h
e
c
k
(
s
t
r
i
n
g

u
s
e
r
n
a
m
e
,

s
t
r
i
n
g

p
a
s
s
w
o
r
d
)

7
9

{

8
0

/
/

N
o
t
i
c
e
:

P
l
a
c
e
h
o
l
d
e
r
s

a
r
e

u
s
e
d

i
n
s
t
e
a
d

o
f

t
h
e

a
c
t
u
a
l

v
a
l
u
e
s
.

8
1

S
q
l
C
o
m
m
a
n
d

c
o
m
m
a
n
d

=

n
e
w

S
q
l
C
o
m
m
a
n
d
(
@
"

8
2

S
E
L
E
C
T

C
O
U
N
T
(
*
)

8
3

F
R
O
M

U
s
e
r
s

8
4

W
H
E
R
E

u
s
e
r
n
a
m
e

=

@
u
s
e
r
n
a
m
e

A
N
D

p
a
s
s
w
o
r
d

=

@
p
a
s
s
w
o
r
d
"
,

8
5

_
c
o
n
n
e
c
t
i
o
n
)
;

8
6

/
*

H
e
r
e
,

w
e

"
f
i
l
l

i
n
"

t
h
e

p
l
a
c
e
h
o
l
d
e
r
s

w
i
t
h

t
h
e

c
o
r
r
e
c
t

v
a
l
u
e
s
.

T
h
e

M
S
S
Q
L

d
r
i
v
e
r

8
7

*

a
u
t
o
m
a
t
i
c
a
l
l
y

e
s
c
a
p
e
s

t
h
e
m

s
o

t
h
e
r
e
'
s

n
o

c
h
a
n
c
e

o
f

S
Q
L

i
n
j
e
c
t
i
o
n

v
u
l
n
e
r
a
b
i
l
i
t
i
e
s
!

8
8

*

A
l
t
e
r
n
a
t
i
v
e

a
p
p
r
o
a
c
h
e
s

i
n
c
l
u
d
e

u
s
i
n
g

s
t
o
r
e
d

p
r
o
c
e
d
u
r
e
s
,

o
r

o
t
h
e
r

d
a
t
a
b
a
s
e

8
9

*

t
e
c
h
n
o
l
o
g
i
e
s
.

R
e
f
e
r

t
o

m
y

p
o
r
t
f
o
l
i
o

w
r
i
t
e
u
p

f
o
r

m
o
r
e

i
n
f
o
r
m
a
t
i
o
n
!

9
0

*
/

9
1

c
o
m
m
a
n
d
.
P
a
r
a
m
e
t
e
r
s
.
A
d
d
W
i
t
h
V
a
l
u
e
(
"
u
s
e
r
n
a
m
e
"
,

u
s
e
r
n
a
m
e
)
;

9
2

c
o
m
m
a
n
d
.
P
a
r
a
m
e
t
e
r
s
.
A
d
d
W
i
t
h
V
a
l
u
e
(
"
p
a
s
s
w
o
r
d
"
,

p
a
s
s
w
o
r
d
)
;

9
3

/
/

S
a
m
e

c
h
e
c
k

a
s

p
r
e
v
i
o
u
s

m
e
t
h
o
d

9
4

r
e
t
u
r
n

(
i
n
t
)

c
o
m
m
a
n
d
.
E
x
e
c
u
t
e
S
c
a
l
a
r
(
)

!
=

0
;

9
5

}

9
6

}

9
7

}

9
8

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
.
N
E
T
\
P
o
r
t
f
o
l
i
o
\
C
o
d
e
\
S
q
l
I
n
j
e
c
t
i
o
n
\
D
i
r
e
c
t
\
P
r
o
g
r
a
m
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
D
a
t
a
.
S
q
l
C
l
i
e
n
t
;

34
n
a
m
e
s
p
a
c
e

D
i
r
e
c
t
S
q
l
I
n
j
e
c
t
i
o
n

5
{

6

/
/
/

<
s
u
m
m
a
r
y
>

7

/
/
/

P
r
o
g
r
a
m

t
o

d
e
m
o
n
s
t
r
a
t
e

S
Q
L

i
n
j
e
c
t
i
o
n

v
u
l
n
e
r
a
b
i
l
i
t
i
e
s

a
n
d

h
o
w

t
h
e
y

c
a
n

b
e

a
v
o
i
d
e
d

8

/
/
/

<
/
s
u
m
m
a
r
y
>

9

/
/
/

<
a
u
t
h
o
r

e
m
a
i
l
=
"
d
a
n
i
e
l
@
d
a
n
.
c
x
"
>
D
a
n
i
e
l

L
o

N
i
g
r
o
<
/
a
u
t
h
o
r
>

1
0

c
l
a
s
s

P
r
o
g
r
a
m

1
1

{

1
2

p
r
o
t
e
c
t
e
d

c
o
n
s
t

s
t
r
i
n
g

C
O
N
N
E
C
T
I
O
N
_
S
T
R
I
N
G

=

@
"

1
3

D
a
t
a

S
o
u
r
c
e
=
D
A
N
I
E
L
-
L
A
P
T
O
P
2
\
S
Q
L
E
X
P
R
E
S
S
;
I
n
i
t
i
a
l

C
a
t
a
l
o
g
=
G
a
d
g
e
t
s
;

1
4

I
n
t
e
g
r
a
t
e
d

S
e
c
u
r
i
t
y
=
T
r
u
e
;
P
o
o
l
i
n
g
=
F
a
l
s
e
"
;

1
5

1
6

p
r
o
t
e
c
t
e
d

s
t
a
t
i
c

S
q
l
C
o
n
n
e
c
t
i
o
n

_
c
o
n
n
e
c
t
i
o
n
;

1
7

1
8

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)

1
9

{

2
0

C
o
n
n
e
c
t
T
o
D
a
t
a
b
a
s
e
(
)
;

2
1

S
h
o
w
T
y
p
e
s
(
)
;

2
2

2
3

d
o

2
4

{

2
5

C
o
n
s
o
l
e
.
W
r
i
t
e
(
"
S
e
l
e
c
t

t
y
p
e
:

"
)
;

2
6

s
t
r
i
n
g

t
y
p
e

=

C
o
n
s
o
l
e
.
R
e
a
d
L
i
n
e
(
)
;

2
7

V
u
l
n
e
r
a
b
l
e
L
i
s
t
(
t
y
p
e
)
;

2
8

}

w
h
i
l
e

(
t
r
u
e
)
;

2
9

3
0

C
o
n
s
o
l
e
.
R
e
a
d
K
e
y
(
)
;

3
1

}

3
2

3
3

p
r
o
t
e
c
t
e
d

s
t
a
t
i
c

v
o
i
d

C
o
n
n
e
c
t
T
o
D
a
t
a
b
a
s
e
(
)

3
4

{

3
5

_
c
o
n
n
e
c
t
i
o
n

=

n
e
w

S
q
l
C
o
n
n
e
c
t
i
o
n
(
C
O
N
N
E
C
T
I
O
N
_
S
T
R
I
N
G
)
;

3
6

_
c
o
n
n
e
c
t
i
o
n
.
O
p
e
n
(
)
;

3
7

}

3
8

3
9

/
/
/

<
s
u
m
m
a
r
y
>

4
0

/
/
/

S
h
o
w

a

l
i
s
t

o
f

a
l
l

t
h
e

a
v
a
i
l
a
b
l
e

g
a
d
g
e
t

t
y
p
e
s

4
1

/
/
/

<
/
s
u
m
m
a
r
y
>

4
2

p
r
o
t
e
c
t
e
d

s
t
a
t
i
c

v
o
i
d

S
h
o
w
T
y
p
e
s
(
)

4
3

{

4
4

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
A
v
a
i
l
a
b
l
e

g
a
d
g
e
t

t
y
p
e
s
:
"
)
;

4
5

S
q
l
C
o
m
m
a
n
d

c
o
m
m
a
n
d

=

n
e
w

S
q
l
C
o
m
m
a
n
d
(
"
S
E
L
E
C
T

G
a
d
g
e
t
T
y
p
e
N
a
m
e

F
R
O
M

G
a
d
g
e
t
T
y
p
e
"
,

_
c
o
n
n
e
c
t
i
o
n
)
;

4
6

4
7

4
8

4
9

5
0

u
s
i
n
g

(
S
q
l
D
a
t
a
R
e
a
d
e
r

r
e
a
d
e
r

=

c
o
m
m
a
n
d
.
E
x
e
c
u
t
e
R
e
a
d
e
r
(
)
)

5
1

{

5
2

w
h
i
l
e

(
r
e
a
d
e
r
.
R
e
a
d
(
)
)

5
3

{

5
4

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
r
e
a
d
e
r
[
"
G
a
d
g
e
t
T
y
p
e
N
a
m
e
"
]
)
;

5
5

}

5
6

}

5
7

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
)
;

5
8

}

5
9

6
0

/
/
/

<
s
u
m
m
a
r
y
>

6
1

/
/
/

D
i
s
p
l
a
y

a
l
l

g
a
d
g
e
t
s

o
f

a

c
e
r
t
a
i
n

t
y
p
e
.

V
u
l
n
e
r
a
b
l
e

t
o

S
Q
L

i
n
j
e
c
t
i
o
n
!

6
2

/
/
/

<
/
s
u
m
m
a
r
y
>

6
3

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
g
a
d
g
e
t
T
y
p
e
"
>
<
/
p
a
r
a
m
>

6
4

p
r
o
t
e
c
t
e
d

s
t
a
t
i
c

v
o
i
d

V
u
l
n
e
r
a
b
l
e
L
i
s
t
(
s
t
r
i
n
g

g
a
d
g
e
t
T
y
p
e
)

6
5

{

6
6

S
q
l
C
o
m
m
a
n
d

c
o
m
m
a
n
d

=

n
e
w

S
q
l
C
o
m
m
a
n
d
(

6
7

s
t
r
i
n
g
.
F
o
r
m
a
t
(

6
8

@
"

6
9

S
E
L
E
C
T

G
a
d
g
e
t
I
D
,

m
.
N
a
m
e

M
a
n
u
f
a
c
t
u
r
e
r
,

g
.
N
a
m
e

7
0

F
R
O
M

G
a
d
g
e
t

g

7
1

L
E
F
T

O
U
T
E
R

J
O
I
N

G
a
d
g
e
t
T
y
p
e

t

O
N

t
.
G
a
d
g
e
t
T
y
p
e
I
D

=

g
.
G
a
d
g
e
t
T
y
p
e

7
2

L
E
F
T

O
U
T
E
R

J
O
I
N

M
a
n
u
f
a
c
t
u
r
e
r

m

O
N

m
.
M
a
n
u
f
a
c
t
u
r
e
r
I
D

=

g
.
M
a
n
u
f
a
c
t
u
r
e
r

7
3

W
H
E
R
E

t
.
G
a
d
g
e
t
T
y
p
e
N
a
m
e

=

'
{
0
}
'
"
,

7
4

g
a
d
g
e
t
T
y
p
e
)
,

2
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
.
N
E
T
\
P
o
r
t
f
o
l
i
o
\
C
o
d
e
\
S
q
l
I
n
j
e
c
t
i
o
n
\
D
i
r
e
c
t
\
P
r
o
g
r
a
m
.
c
s

7
5

_
c
o
n
n
e
c
t
i
o
n
)
;

7
6

7
7

u
s
i
n
g

(
S
q
l
D
a
t
a
R
e
a
d
e
r

d
a
t
a
R
e
a
d
e
r

=

c
o
m
m
a
n
d
.
E
x
e
c
u
t
e
R
e
a
d
e
r
(
)
)

7
8

{

7
9

w
h
i
l
e

(
d
a
t
a
R
e
a
d
e
r
.
R
e
a
d
(
)
)

8
0

{

8
1

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
{
0
}

b
y

{
1
}

(
I
D

=

{
2
}
)
"
,

8
2

d
a
t
a
R
e
a
d
e
r
[
"
N
a
m
e
"
]
,

d
a
t
a
R
e
a
d
e
r
[
"
M
a
n
u
f
a
c
t
u
r
e
r
"
]
,

d
a
t
a
R
e
a
d
e
r
[

"
G
a
d
g
e
t
I
D
"
]
)
;

8
3

}

8
4

}

8
5

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
)
;

8
6

}

8
7

8
8

/
/
/

<
s
u
m
m
a
r
y
>

8
9

/
/
/

C
h
e
c
k

u
s
e
r
n
a
m
e

a
n
d

p
a
s
s
w
o
r
d

a
r
e

v
a
l
i
d
.

N
O
T

v
u
l
n
e
r
a
b
l
e

t
o

S
Q
L

i
n
j
e
c
t
i
o
n
!

9
0

/
/
/

<
/
s
u
m
m
a
r
y
>

9
1

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
u
s
e
r
n
a
m
e
"
>
T
h
e

u
s
e
r
n
a
m
e
.
<
/
p
a
r
a
m
>

9
2

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
p
a
s
s
w
o
r
d
"
>
T
h
e

p
a
s
s
w
o
r
d
.
<
/
p
a
r
a
m
>

9
3

/
/
/

<
r
e
t
u
r
n
s
>
T
r
u
e

i
f

u
s
e
r

i
s

v
a
l
i
d
,

o
t
h
e
r
w
i
s
e

F
a
l
s
e
<
/
r
e
t
u
r
n
s
>

9
4

p
r
o
t
e
c
t
e
d

s
t
a
t
i
c

b
o
o
l

F
i
x
e
d
C
h
e
c
k
(
s
t
r
i
n
g

u
s
e
r
n
a
m
e
,

s
t
r
i
n
g

p
a
s
s
w
o
r
d
)

9
5

{

9
6

/
/

N
o
t
i
c
e
:

P
l
a
c
e
h
o
l
d
e
r
s

a
r
e

u
s
e
d

i
n
s
t
e
a
d

o
f

t
h
e

a
c
t
u
a
l

v
a
l
u
e
s
.

9
7

S
q
l
C
o
m
m
a
n
d

c
o
m
m
a
n
d

=

n
e
w

S
q
l
C
o
m
m
a
n
d
(
@
"

9
8

S
E
L
E
C
T

C
O
U
N
T
(
*
)

9
9

F
R
O
M

U
s
e
r
s

1
0
0

W
H
E
R
E

u
s
e
r
n
a
m
e

=

@
u
s
e
r
n
a
m
e

A
N
D

p
a
s
s
w
o
r
d

=

@
p
a
s
s
w
o
r
d
"
,

1
0
1

_
c
o
n
n
e
c
t
i
o
n
)
;

1
0
2

/
*

H
e
r
e
,

w
e

"
f
i
l
l

i
n
"

t
h
e

p
l
a
c
e
h
o
l
d
e
r
s

w
i
t
h

t
h
e

c
o
r
r
e
c
t

v
a
l
u
e
s
.

T
h
e

M
S
S
Q
L

d
r
i
v
e
r

1
0
3

*

a
u
t
o
m
a
t
i
c
a
l
l
y

e
s
c
a
p
e
s

t
h
e
m

s
o

t
h
e
r
e
'
s

n
o

c
h
a
n
c
e

o
f

S
Q
L

i
n
j
e
c
t
i
o
n

v
u
l
n
e
r
a
b
i
l
i
t
i
e
s
!

1
0
4

*

A
l
t
e
r
n
a
t
i
v
e

a
p
p
r
o
a
c
h
e
s

i
n
c
l
u
d
e

u
s
i
n
g

s
t
o
r
e
d

p
r
o
c
e
d
u
r
e
s
,

o
r

o
t
h
e
r

d
a
t
a
b
a
s
e

1
0
5

*

t
e
c
h
n
o
l
o
g
i
e
s
.

R
e
f
e
r

t
o

m
y

p
o
r
t
f
o
l
i
o

w
r
i
t
e
u
p

f
o
r

m
o
r
e

i
n
f
o
r
m
a
t
i
o
n
!

1
0
6

*
/

1
0
7

c
o
m
m
a
n
d
.
P
a
r
a
m
e
t
e
r
s
.
A
d
d
W
i
t
h
V
a
l
u
e
(
"
u
s
e
r
n
a
m
e
"
,

u
s
e
r
n
a
m
e
)
;

1
0
8

c
o
m
m
a
n
d
.
P
a
r
a
m
e
t
e
r
s
.
A
d
d
W
i
t
h
V
a
l
u
e
(
"
p
a
s
s
w
o
r
d
"
,

p
a
s
s
w
o
r
d
)
;

1
0
9

/
/

S
a
m
e

c
h
e
c
k

a
s

p
r
e
v
i
o
u
s

m
e
t
h
o
d

1
1
0

r
e
t
u
r
n

(
i
n
t
)
c
o
m
m
a
n
d
.
E
x
e
c
u
t
e
S
c
a
l
a
r
(
)

!
=

0
;

1
1
1

}

1
1
2

}

1
1
3

}

1
1
4

Security Concerns for
Web Services

Short Report

Security Concerns for Web Services

Page 2 of 5

Security Concerns for Web Services

1 Introduction
Security is a major concern for any public-facing system. Web services are especially important to

secure, as often they power the backend for several systems. This short report will focus on the

various security aspects that require consideration when developing web services. Unless otherwise

stated, this short report will focus exclusively on SOAP-based web services.

There are six main security concepts that need to be focused on when doing security testing

(Wikipedia 2011b). They are:

2 Authentication
Authentication is verifying that the user accessing the web service is allowed to do so. Most of the

time, this is done by verifying user credentials of some form (although, for some web services only

used internally by a company, this can be done by IP-based restrictions). Depending on how secure

the web service needs to be, there are several different methods to do this

2.1 Basic Username / Password
A large number of web services use a normal username and password for authentication the user.

Generally, this should only be done over SSL (via HTTPS), otherwise someone sniffing the connection

could steal the password. The WS-Security standard specifies a standard method of doing this – A

custom envelope header that is added to every message (Nadalin et al. 2006). This is very similar to

how Basic HTTP authentication works – Basic authentication adds a HTTP header with a Base64-

encoded version of the username and password.

If added security is required (or SSL can’t be used), digest authentication can be used. Unlike basic

authentication, digest authentication uses encryption instead of sending the password in plaintext

(Wikipedia 2011a). This is also supported by the WS-Security standard (Seely 2002).

2.2 Client certificate
For situations that require added security, a client certificate (also known as an X.509 certificate) can

be used. Essentially, this is similar to how SSL works, except it is the other way around. The client

sends its certificate to the server, which validates that it’s a valid certificate, and the certificate

owner is able to access the server (Wikipedia 2011c).

Generally, this is done using SSL (i.e. HTTPS) as a transport. The client verifies the server is who is

claims to be (as with a normal SSL connection), and the server verifies the client in the same way.

This is often known as “Mutually Authenticated SSL” or “Mutual authentication”.

2.3 Others
There are many other methods of authentication, including Kerberos tickets and custom

authentication tokens. I will not discuss these in detail as they are not widely used compared to the

other two methods.

Security Concerns for Web Services

Page 3 of 5

3 Authorization
Authorization, while often considered a part of authentication, is a separate issue. While

authentication is the act of validating that the user is recognised by the system, authorization is the

act of validating that they’re allowed to do what they’re trying to do (i.e. whether they have the

right to access the service or data).

Most of the time, this is implemented using some role-based or group-based system. For example,

normal users should be able to read data, whereas super-users or administrators are usually allowed

to update or create data. The ASP.NET membership provider supports this via roles, and is extensible

so you can use your own database with it.

4 Confidentiality
Confidentiality is the guarantee that nobody else can “eavesdrop” on the conversation between the

client and the server. This prevents “man in the middle” attacks, where the client is connecting to a

third party masquerading as the proper server, proxying all the data (Geuer-Pollmann & Claessens

2005). One common method to ensure confidentiality is to use network layer security such as SSL or

some sort of mutual authentication, as mentioned in the “client certificate” section above.

If this is not possible, message-level encryption can be used. Message-level encryption is basically

encryption of the payloads of SOAP calls. The client and server both need to agree on the encryption

type to use, and potentially have a shared encryption key (shared before the web service calls).

The difference between transport-level encryption and message-level encryption is that the

application doesn’t really need to worry about transport-level security, as it is provided by a lower

layer. With message-level encryption, the application needs to manually encrypt all the messages.

Transport-level security can often be added as an enhancement to existing web services, as it

generally does not require any changes to the code. Message-level encryption will almost always

require code changes, as it is done at the application layer.

5 Integrity
Integrity is the guarantee that the message was not modified in its journey from client to server. This

is similar to confidentiality, and related in some ways. The most common way to ensure integrity is

to sign messages. Signing is very similar to encryption in the way that it works. However, instead of

encrypting the whole message, signing involves getting a hash of the message, using the client’s

private key. The server can use the client’s public key to check that the signature is authentic.

Because any changes to the message would cause a change to the signature, and the signature can

only be generated using the client’s private key, this ensures that the message was not changed in

transport.

6 Non-repudiation
Non-repudiation is the guarantee that the sender of the message can’t deny that they sent it at a

later point in time. Generally, this is achieved by having an audit trail (logging every web service call)

so that all the changes made can be proven later. Quite often, this goes hand-in-hand with integrity

Security Concerns for Web Services

Page 4 of 5

– Messages are signed (so that you are sure they haven’t been tampered with) and then logged (to

keep as future proof that the messages were not tampered with).

7 Accessibility
Accessibility is probably the one topic people think of when they think of security. Accessibility is

ensuring that the system is always accessible, and is not impared by DoS or DDoS attacks.

Denial of Service attacks (otherwise known as “DoS attacks”) are a common issue for all modern web

applications and web services. A denial of service attack is when one client sends you hundreds or

even thousands of rogue hits per second, with the intention of overloading your system and causing

it to go offline for everyone (denying them access to the service).

Denial of service attacks can often be blocked at a firewall level, by analysis of traffic. If it is receiving

a large number of similar hits from one IP address, block that IP address from accessing the server

(Kargl, Maier & Weber 2001). If it’s not possible to do this at a firewall level, it can be done at an

application level (although this involves more work). To do this, you’d save the number of hits

received from each IP address into a database. If the number of hits exceeds a specific threshold,

block the IP for a certain period of time.

Unfortunately, DDoS (Distributed Denial of Service) attacks are often very hard to mitigate. The

difference between DoS and DDoS attacks is that while a DoS attack involves a single client, a DDoS

attack involves many (often tens or even hundreds) of clients. These clients are often part of

botnets, which are networks of computers infected with viruses that all report to one central

“control” server (Mirkovic & Reiher 2004). The control server tells the botnet clients where to attack,

and they all attack it.

Because it is distributed, it is often hard to tell the difference between a DDoS attack, and a large

amount of legitimate traffic in a short period of time. It may be possible to block DDoS attacks if all

the requests have a pattern. For example, they all request the same specific URL, you can block

access to that URL.

8 Summary
Security is a major concern for any public-facing system, and web services are no different. Since

they often provide the backend for several systems, any security issues in web services are relatively

high-risk. Focusing on the six main security concepts (authentication, authorization, confidentiality,

integrity, non-repudiation and accessibility) will help ensure the security of your web service.

9 References
Geuer-Pollmann, C & Claessens, J 2005, 'Web services and web service security standards',
Information Security Technical Report, vol. 10, no. 1, pp. 15-24,

Kargl, F, Maier, J & Weber, M 2001, 'Protecting web servers from distributed denial of service
attacks,' ACM, 514-524.

Security Concerns for Web Services

Page 5 of 5

Mirkovic, J & Reiher, P 2004, 'A taxonomy of DDoS attack and DDoS defense mechanisms', ACM
SIGCOMM Computer Communication Review, vol. 34, no. 2, pp. 39-53,

Nadalin, A, Kaler, C, Monzillo, R & Hallam-Baker, P 2006, Web services security: Soap message
security 1.1 (ws-security 2004), viewed

Seely, S 2002, Understanding WS-Security, viewed 2011-06-02, <http://msdn.microsoft.com/en-
us/library/ms977327.aspx>.

Wikipedia 2011a, Digest access authentication - Wikipedia, The Free Encyclopedia, viewed 2011-06-
02, <http://en.wikipedia.org/wiki/Digest_access_authentication>.

Wikipedia 2011b, Security testing - Wikipedia, The Free Encyclopedia, viewed 2011-06-02,
<http://en.wikipedia.org/wiki/Security_testing>.

Wikipedia 2011c, X.509 - Wikipedia, The Free Encyclopedia, viewed 2011-06-01,
<http://en.wikipedia.org/wiki/X.509>.

http://msdn.microsoft.com/en-us/library/ms977327.aspx%3e
http://msdn.microsoft.com/en-us/library/ms977327.aspx%3e
http://en.wikipedia.org/wiki/Digest_access_authentication%3e
http://en.wikipedia.org/wiki/Security_testing%3e
http://en.wikipedia.org/wiki/X.509%3e

ASP.NET Web Forms
Short report

ASP.NET Web Forms – Short Report

Page 2 of 6

ASP.NET Web Forms – Short Report

1 Introduction
ASP.NET web forms was (and still is) the “classic” method of creating sites using ASP.NET technology.

It was designed to mimic windows forms in a web-based environment, including the event model

(Liberty & Hurwitz 2003). This short report will briefly talk about the advantages and disadvantages

of the ASP.NET web forms model.

2 Advantages
Most (if not all) of the advantages listed below are the advantages ASP.NET Web Forms have over

“classic ASP” and other interpreted languages. Developers exclusively using Microsoft technologies

would have encountered classic ASP in the past.

2.1 Code-Behind Model
Previously (with classic ASP), business logic and presentational code could be combined in the one

file. This often resulted in spaghetti code and tightly coupled code that is very hard to modify. It was

possible to create a “framework” to handle the separation of business logic and presentational code,

but this was rarely done.

The “code-behind” model was originally introduced as part of ASP.NET 1.0, and significantly

enhanced in ASP.NET 2.0 (Patel, Acker & McGovern 2006). In this model, controls and static HTML

are placed into a frontend file (.aspx), and all the code to interface with the controls is placed in a

code-behind file (.aspx.cs for C# and .aspx.vb for VB.NET). This is an implementation of the

“separation of concerns” principle – The UI code goes in one file, and the code that does all the work

goes in another file. This is a significant improvement over the previous ASP (Active Server Pages)

scripting framework, where business logic and presentation code were combined into the one file.

2.2 Compiled = Faster
Traditionally, web scripting languages were interpreted languages such as VBScript or JScript

(Microsoft’s version of JavaScript) as used in ASP. These languages are not compiled; instead they’re

interpreted every time you go to the page. For every page hit, the scripting language runtime needs

to load the file, parse it into an abstract syntax tree, and then execute the contained commands.

Doing this every hit causes noticeable performance degradation.

On the other hand, ASP.NET code (like all .NET code) is compiled. The code-behind files can be

compiled before deployment, and the .aspx files are compiled at runtime by IIS, the first time the

site is hit. Both are first compiled into Common Intermediate Language (CIL) code by the compiler,

and are then compiled into machine code at runtime by a “Just in Time” (JIT) compiler.

 This means that ASP.NET has performance advantages over older technologies such as ASP (Active

Server Pages) which are interpreted. The interpretation of the .aspx files only happens once (on the

first hit), meaning that loading the site should theoretically be faster than previous technologies.

Compiling CIL code into machine code is significantly faster than interpreting a whole file.

ASP.NET Web Forms – Short Report

Page 3 of 6

2.3 Rapid Application Development
Rapid development of applications in ASP.NET is

definitely possible, and is one of its strongpoints

(Liberty & Hurwitz 2003). Applications can be

developed quickly and easily simply by dragging pre-

built (and custom) controls on to the page, and data-

binding them to a business layer component.

Due to its popularity, there is a very wide range of

third-party components available for ASP.NET web

forms, including advanced controls like spreadsheet

and graphing components. Companies such as Telerik

are dedicated to creating controls for ASP.NET.

2.4 Easy Development Model for WinForms Developers
The ASP.NET Web Forms model is based off the classic Windows Forms model. That is, it is event

driven. For example, whenever you click on a button, a button click event is fired on the server.

Developers with previous Windows forms experience should feel right at home, as a lot of the

abstractions (such as events and event listeners) are the same. Familiar events such as Click,

KeyPress and SelectedIndexChanged (for lists) are all supported using similar handlers.

The ASP.NET framework handles all the form posts and form datarequired to make the event

handlers work. Since HTML is stateless, the current “state” of the page needs to be stored in order

to make the event system work, which is often a cause of frustration for ASP.NET developers (see

“disadvantages” section below).

3 Disadvantages
The ASP.NET web forms model is powerful and has a number of advantages over previous

technologies, but it does have some downsides. Many of these relate to the control and event

abstractions involved in the framework.

3.1 Unit-Testing Impossible
One of the downsides of ASP.NET web forms is that unit testing web forms pages is close to

impossible, because you can’t instantiate new instances of pages without going through the whole

(rather complex) ASP.NET Page Life Cycle (Microsoft). ASP.NET web form applications are often

tightly coupled to all controls used by the page, which makes the code quite unreusable and

untestable, and increases coupling.

Controllers in the ASP.NET MVC framework are unit testable as they can be instantiated very easily.

ASP.NET MVC doesn’t have the complicated page life cycle to worry about.

3.2 Autogenerated HTML
The controls abstraction used in ASP.NET web forms may be great in theory, but it leads to HTML

being automatically generated. This HTML is often bloated with many levels of tables (although this

has been partially resolved in newer ASP.NET versions) and is semantically ugly. Using CSS to style

Figure 1: Example of a pre-built charting control
for ASP.NET Web Forms.

ASP.NET Web Forms – Short Report

Page 4 of 6

the output of a lot of controls is often a pain to do, due to the unsemantic code. Also, you lack

control over the HTML output, as you’re not actually writing any of it yourself.

3.3 Viewstate Bloat
 HTTP is stateless. This means that each request is totally separate from all previous requests, and

the server does not keep track of all the requests. Once a request is completed, the server totally

“forgets” about it, and the next request to the same page is fresh. Most web development

frameworks solve this by using sessions and databases to persist data between pages. Often, details

such as the currently logged in user are stored in a session variable on the server, so it persists

across pages.

 The statelessness of HTTP poses a problem for the ASP.NET web forms model – Since it uses an

event-driven design, it needs to know what has changed (i.e. if the contents of any text boxes has

changed, if the state of any checkboxes has changed, etc.). This can’t really be stored in a session

variable, as it’s unique per page load.

To solve this “problem”, the ASP.NET web

forms framework stores the state of the

current page in a hidden field called

“ViewState”. When used incorrectly, the

ViewState can grow to hundreds of

kilobytes, causing significant delays to page

load time.

ViewState bloat is often caused by developers not understanding how ViewState works, or using it

incorrectly (Reed 2006). Without looking at the output HTML source of your web application, it’s

very hard to tell that your ViewState is growing to unusable proportions. At work once, there was a

page that kept timing out because it had a 10 MB viewstate1.

If you are not using events in the page, viewstate can often be turned off, and this is the suggested

best practice approach (Muhammad & Milner 2003). However, this can have unintended side effects

(for example, dropdown lists require that ViewState is turned on).

3.4 Complicated Scenarios are Often Hard
Another disadvantage of ASP.NET web forms is that some more complicated scenarios (which are

very easy to implement with other frameworks) are practically impossible to implement.

3.4.1 Dynamic creation of controls

One example is adding controls at runtime on the client side, via JavaScript. With other frameworks,

you can simply insert the HTML required for the control (either created in JavaScript, or rendered

server-side then returned via an AJAX call) and it all works nicely (as you’re just handling POST data).

With ASP.NET web forms, since controls are built into a tree structure server-side, you can’t add

more controls on the client side. Any added controls are ignored by the server. You can directly

access the POST data to get the value of the control, but this bypasses the ASP.NET web form way of

doing things (using “controls”).

1
 True story.

Figure 2: Example of ViewState bloat

ASP.NET Web Forms – Short Report

Page 5 of 6

The ASP.NET AJAX toolkit added a control called an “UpdatePanel” that allows partial-page reloads

(AJAX). Whilst this is an improvement (and does allow for dynamic adding of controls), UpdatePanel

requests send all the standard POST data including the viewstate (Prosise 2007) so they’re not very

efficient at all. Additionally, they do not allow for control creation in JavaScript itself – Instead, the

page section is rendered server-side and returned.

The ASP.NET MVC framework supports dynamic creation of controls, as it takes a different approach

to controls. In the ASP.NET MVC framework, “controls” are just pieces of HTML, and POST data is

handled directly.

3.5 “Ugly” URLs
A trend with modern web applications is to have “pretty”, descriptive URLs, often using RESTful

practices. This keeps URLs clean and human-friendly as well as SEO-friendly. Until recently, ASP.NET

web forms did not support these “pretty” URLs natively at all. You had to either use a third-party

component, or create a component for it yourself.

Support for URL routing was added in the .NET Framework 3.5 SP1 (Allen 2009), using the same

routing engine that the ASP.NET MVC framework uses. However, it is still a component that sits on

top of an architecture that was not designed for it, and hence may not work correctly all the time

(for example, postbacks commonly have issues with routed URLs). On the other hand, ASP.NET MVC

was built from the ground-up to support URL routing.

4 Summary
ASP.NET web forms is a very powerful framework, allowing you to easily and rapidly create web

applications using a development style similar to that of Windows forms. Due to its popularity, there

is a large library of third-party components available for Web Forms, making rapid application

development very easy.

 However, there are several disadvantages of the framework, including “ViewState bloat”, a lack of

control over the rendered HTML, and “ugly” URLs. In my opinion, it’s a level of abstraction that’s too

high for web development. Web developers should know how HTTP works (and the fact it’s

stateless) and develop web applications in the same way as they’re done in every other

programming language.

5 References
Allen, S 2009, Routing with ASP.NET Web Forms, viewed 2011-05-29,
<http://msdn.microsoft.com/en-us/magazine/dd347546.aspx>.

Liberty, J & Hurwitz, D 2003, Programming ASP.NET, 2 edn., O'Reilly & Associates, Inc., Sebastopol,
CA, USA.

Microsoft ASP.NET Page Life Cycle Overview, viewed 2011-05-15, <http://msdn.microsoft.com/en-
us/library/ms178472.aspx>.

Muhammad, F & Milner, M 2003, Real world ASP. NET best practices, Apress.

http://msdn.microsoft.com/en-us/magazine/dd347546.aspx%3e
http://msdn.microsoft.com/en-us/library/ms178472.aspx%3e
http://msdn.microsoft.com/en-us/library/ms178472.aspx%3e

ASP.NET Web Forms – Short Report

Page 6 of 6

Patel, J, Acker, B & McGovern, R 2006, Feature Changes in ASP.NET 2.0, viewed 2011-05-30,
<http://msdn.microsoft.com/en-us/library/aa479401.aspx>.

Prosise, J 2007, UpdatePanel Tips and Tricks, viewed 2011-06-05, <http://msdn.microsoft.com/en-
us/magazine/cc163413.aspx>.

Reed, D 2006, TRULY Understanding ViewState, viewed 2011-05-29,
<http://weblogs.asp.net/infinitiesloop/archive/2006/08/03/Truly-Understanding-Viewstate.aspx>.

http://msdn.microsoft.com/en-us/library/aa479401.aspx%3e
http://msdn.microsoft.com/en-us/magazine/cc163413.aspx%3e
http://msdn.microsoft.com/en-us/magazine/cc163413.aspx%3e
http://weblogs.asp.net/infinitiesloop/archive/2006/08/03/Truly-Understanding-Viewstate.aspx%3e

The Model-View-
Controller Pattern

Short Report

The Model-View-Controller Pattern

Page 2 of 5

The Model-View-Controller Pattern

1 Introduction
An alternative structure to the classic three-tier architecture is the MVC design pattern. The MVC

pattern was originally created by Trygve Reenskaug for Xerox PARC (1979), with a more detailed

description in a paper called “Applications Programming in Smalltalk-80: How to use Model–View–

Controller” (Burbeck 1992). Since then, the pattern has been expanded to cater for web applications,

in addition to traditional desktop applications (Selfa, Carrillo & Del Rocio Boone 2006). This short

report will focus exclusively on the Model-View-Controller pattern as it applies to web applications.

2 Components
In the MVC architecture, there are

several different components. There

are the main components, which the

name “MVC” is based off (models,

views and controllers). In addition to

these, web-based MVC frameworks

often have other components such as a

dispatcher.

2.1 Models
Models are basically the MVC

equivalent of the data layer in

traditional three-tier architectures.

They’re responsible for database

operations, as well as containing data

from the database.

The same technologies used for data

layers (such as ADO.NET) can be used to create the models, but ORM systems are used almost all of

the time. This is usually either Entity Framework or NHibernate (or one of its variants such as Fluent

NHibernate, Castle ActiveRecord, etc), as these are the most popular ORM systems in the .NET

community.

When using an ORM system, the models would consist of the actual ORM entities themselves, as

well as some CRUD methods. The CRUD methods are generally either part of a repository (if using

the repository pattern), or static methods on the ORM entities (if using the Active Record pattern).

2.2 Views
Views are roughly the equivalent of a user interface layer. However, one of the major differences is

that views are “dumb” – They do not call any business logic code at all! Logic in views is restricted to

only view-related logic (for example, iterating to show more than one row, and showing “No results

were found” only when a search returns no results). Views get passed model data from the

Figure 1: Diagram of the MVC pattern (Azad 2007)

The Model-View-Controller Pattern

Page 3 of 5

controllers, which they render. This is their whole purpose in life. In a way, views are a little like the

.aspx files used with ASP.NET web forms.

Views do not necessarily have to be HTML. For example, if you are using AJAX (and what modern

sites don’t?), you might have some views for JSON or XML results. Views can also be used internally

– If your site sends emails, the email content would be stored in views.

2.3 Controllers
A controller is a class that handles incoming requests. One controller has multiple methods (referred

to as “actions” in MVC terminology). The controller will generally load required data via the models,

and then pass the data to the views to render. They may either implement the business logic

themselves, or call business layer functions to do so. In most situations, there is one controller per

business object (for example, a blog system may have a Post controller, a Comment controller and

an Author controller).

In a way, controllers are somewhat similar to the code-behind files of an ASP.NET web forms

application. However, a key difference between controllers and code-behind files are that

controllers are not coupled to the views in any way. In a properly designed MVC application, you can

totally replace the views without modifying the controllers at all (and vice versa). This also allows

multiple controllers to use the same views, respecting the DRY (Don’t Repeat Yourself) principle.

2.4 Dispatcher
Also known as a “router”, the dispatcher is generally a component that is built-in to the framework

you use. Since it deals with URLs, it is specific to web-based MVC frameworks. Its role is to parse the

URLs of incoming requests, and map them to specific controller actions. This is generally done by

using a URL routing table. A routing table usually contains a mapping of URL patterns to controllers

and actions. In the Kohana PHP framework, the routing table is setup in a “bootstrap.php” file1. In

the ASP.NET MVC Framework, the outing table is set up in the Global.asax.cs or Global.asax.vb file.

The default URL routing system in MVC frameworks is generally to use a URL structure like

controller/[action]/[id]. With this default URL structure, URLs are routed something like this:

URL Controller Action ID parameter

product/ Product Default Null

product/view Product View Null

product/view/123 Product View 123

This routing structure is fine for most applications, in that it works. Even with these default URLs,

they still look nicer than the URLs generally used with traditional web applications (that use a

programming language like ASP.NET or PHP, without an MVC framework).

However, most applications will probably want to use a custom URL routing structure, in addition to

the default structure. This could potentially make the URLs more search-engine (or user) friendly.

For example, with a product site you might want to include the product name in the URL, and with a

blog site you’d generally want to include the date of the blog post in the URL (for example, /

1
 See https://github.com/Daniel15/Website/blob/master/application/bootstrap.php#L134 for an example (my

site’s bootstrap code)

https://github.com/Daniel15/Website/blob/master/application/bootstrap.php#L134

The Model-View-Controller Pattern

Page 4 of 5

2011/05/15/new-blog-system). Most MVC frameworks are quite flexible and let you specify literally

any URL routing scheme.

3 Advantages
There are several advantages of using the MVC pattern to design web applications. Some of the

main ones are:

 Separation of concerns – If you follow it strictly, the MVC pattern forces you to put all your

data access code into models, and your HTML (or XML, whatever) output into views. While it’s

possible to have ugly spaghetti-code MVC applications, the MVC pattern (and most MVC

frameworks) generally “push” you in the right direction.

 Reusability – As controllers and views are not tightly coupled (views are basically just “blobs”

of HTML), views can easily be reused in other applications. The same for models – You can

reuse your models in other applications quite easily. If you wanted to, you could put all your

models in a separate assembly, and reuse them across several web applications.

 Distributed Development – Since the views, controllers and models are all totally separate,

you can distribute development quite easily. Designers can work on the views, and separate

groups of developers can work on the controllers and models at the same time. Since views

are very simple code, it is easy for designers to edit them.

 Clean URLs – Generally, web applications written with the MVC pattern have nice URLs

compared to those that aren’t. As mentioned in the Dispatcher section above, URL routing is

almost always a core feature of MVC frameworks.

There are other advantages, but these are the main ones. In addition, there are some benefits that

are specific to ASP.NET MVC (including the lack of ViewState, and the fact the HTML is handwritten)

which I’ve covered in the writeup about ASP.NET MVC in my main portfolio document.

4 Differences with three-tier architecture
The main difference between these two architectures is that while the three-tier architecture is

linear, MVC is more triangular. The controllers communicate with models to get data, and then pass

this data to the views. Views do not communicate with the controllers (as opposed to the three-tier

architecture, where the UI layer does (and must) communicate with the business logic layer). This

makes views more reusable (compared to a UI layer implementation), as they are not coupled with

any components.

However, the two architectures do not need to always be separate, and can be used in conjunction

with one another. MVC can be used as a layer on top of a three-tier architecture – The MVC

controllers can call business logic functions, and if the data access layer uses the domain model

pattern, the MVC application can use it as the models.

5 Summary
The MVC design pattern is a great way to design and implement loosely-coupled web applications. It

promotes separation of concerns and loose coupling, allowing easy reuse of all the components.

The Model-View-Controller Pattern

Page 5 of 5

Most MVC frameworks include a URL dispatcher/router allowing clean and friendly URLs to be used

in your application. There are some differences between the three-tier architecture and the MVC

architecture, but both can be combined in the same application.

I used the MVC design pattern to design my own website. The PHP source code is available from

https://github.com/Daniel15/Website.

6 References
Azad, K 2007, Intermediate Rails: Understanding Models, Views and Controllers, viewed 2011-05-30,
<http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-
controllers/>.

Burbeck, S 1992, Applications Programming in Smalltalk-80(TM): How to use Model-View-Controller
(MVC), viewed 2011-05-30, <http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html>.

Reenskaug, T 1979, MVC XEROX PARC 1978-79 viewed 2011-05-30,
<http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html>.

Selfa, DM, Carrillo, M & Del Rocio Boone, M 2006, 'A Database and Web Application Based on MVC
Architecture', in Proceedings of the 16th International Conference on Electronics, Communications
and Computers, IEEE Computer Society, Washington, DC, USA.

https://github.com/Daniel15/Website
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/%3e
http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/%3e
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html%3e
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html%3e

Pros and Cons of the
ADO.NET Provider Model

Short Report

Pros and Cons of the ADO.NET Provider Model

Page 2 of 5

Pros and Cons of the ADO.NET Provider
Model

1 Introduction
ADO.NET is a database abstraction layer provided with the .NET framework. It uses an adapter

pattern, allowing you to easily switch between different database systems (e.g. from Microsoft SQL

Server to MySQL) without changing any of your code. This short report will attempt to describe some

of the pros and cons of using the ADO.NET provider model and the database factory methods

provided by the framework.

2 Advantages
The ADO.NET Provider Model is very powerful and has a number of advantages. These advantages

are the main reasons why it is used.

2.1 One Single Consistant API
The main advantage of using a database abstraction layer such as the ADO.NET provider model is

that you do not need to learn a new API for each database system. Languages such as PHP used to

have this issue – Each database system (eg. MySQL, PostgreSQL, SQL Server, SQLite, etc.) had their

own separate API, each with their own functions. To switch from SQL Server to MySQL, you needed

to learn how the new API works (and learn how it differs from the one you were previously using),

and edit all of your database code to use the new API.

With a database abstraction layer, you can simply change a configuration setting, and can instantly

switch to a different database system with no code changes (provided the database has been

created). This gives you a major advantage and cuts development time when porting to a different

platform. ADO.NET is a good example of a database abstraction layer, and PHP has also

implemented one called PDO (PHP Data Objects)1.

2.2 Database Agnostic
Another benefit of using such a model (well, technically, it’s an extension of the first benefit) is that

you do not have any “vendor lockdown”. You are free to switch to any other database system at any

time. If MySQL is discontinued tomorrow2, you can simply switch to a different system. As

mentioned in the “one single API” section above, there would be no code changes required to switch

to a different database system. If your company gets bought by Microsoft and they want you to

switch from MySQL to SQL Server, it’s very easy to do so.

In theory, that is. The reality is that there are many issues that may be encountered when switching

from one database technology to another. Some of these are listed in the “disadvantages” section

below.

1
 http://php.net/manual/en/book.pdo.php

2
 Very doubtful, but it could happen one day!

http://php.net/manual/en/book.pdo.php

Pros and Cons of the ADO.NET Provider Model

Page 3 of 5

3 Disadvantages / Issues
Unfortunately, due to its very nature, there are a number of issues with the ADO.NET Provider

Model. Most of these stem around using the same SQL queries across multiple database systems.

3.1 SQL Dialects
Much like dialects of a spoken language such as English, SQL comes in multiple dialects. While most

database management systems support at least SQL92, there are several things that aren’t defined

in the standards, such as paging (loading a certain “page” of data). These “gaps” in the standards are

usually implemented in vendor-specific ways, meaning that each database system has its own

method for doing what is essentially the same thing.

Paging is a classic example. With MySQL3 or PostgreSQL4, a query such as the following would be

used to retrieve the first 10 records in from a table:

SELECT * FROM Table LIMIT 10

With Microsoft SQL Server, the query looks like the following:

SELECT TOP 10 * FROM Table

Very subtle difference, but it gets worse when you want a certain section of the records. With

MySQL and PostgreSQL, this is done very simply. To retrieve 10 records starting at number 20 (i.e.

records 20 to 30), you can run a query like this:

SELECT * FROM Table LIMIT 10 OFFSET 20

In Microsoft SQL Server, this is not as simple, as there is no direct equivalent. SQL Server 2005 added

a ROW_NUMBER function that helps with paging, however, it still requires considerably more SQL

than MySQL does (Coles 2008).

One method often used to solve this issue is to have a “query builder”. Instead of directly writing

SQL, you call methods on the query builder, and it builds up the SQL query for you. An example of a

possible (very simple) interface for a query builder is something like the following:

var query = new SelectQuery();

query.From = "Table";

query.Offset = 20;

query.RecordCount = 10;

var rows = query.GetRecords();

GetRecords() would generate and execute the SQL, and return all the rows.

A query builder approach is the approach taken by the NHibernate Object-Relational Mapping

system, as well as Microsoft’s own Entity Framework. Entity Framework uses LINQ queries to build

SQL, internally using a query builder to construct the SQL statement (Blakeley et al. 2006).

3
 A very popular open-source RDBMS. http://www.mysql.com/

4
 Another popular open-source RDBMS. http://www.postgresql.com/

http://www.mysql.com/
http://www.postgresql.com/

Pros and Cons of the ADO.NET Provider Model

Page 4 of 5

3.2 SQL Query Optimisation
When writing queries that work on multiple database systems, you need to write your queries as

simply as possible, so they’re portable to other database systems. Unfortunately, using a generic

query does not allow you to optimise it to the database system, as the SQL is identical for every

database system.

When you run a query, it’s compiled into a version that the database system can understand, a

“query optimiser” is used to optimise this query, and a “query plan” is calculated for the database

query. The query plan says exactly what the database system will do to execute the query (i.e. which

indexes will be used, what data will be loaded, which joins will be done, etc.)

Every database system has its own unique query plan builder, and so different database systems

optimise advanced queries in different ways. This means that a query that is very fast in SQL Server

might be significantly slower on MySQL or PostgreSQL, and different methods of optimisation need

to be used (index or locking hints, for example).

3.3 Database-specific Features
Database systems often come with plenty of built-in features. For example, SQL Server has a “PIVOT”

feature that lets you “rotate” a table – that is, transform rows into columns (Cunningham, Galindo-

Legaria & Graefe 2004). Most database systems also come with functions for manipulating

timestamps. There are no set standards for these features and they vary from database system to

database system, hence you can’t really abstract their usage.

A common example is date handling functions. With MySQL, to get all the entries that were created

in June, you can run a query similar to this:

SELECT * FROM Table WHERE MONTH(CreatedDate) = 6

However, this does not work with all DBMSes (for example, it doesn’t exist in SQLite5). The MONTH

function does exist in SQL Server, but other MySQL functions (eg. MONTHNAME) don’t. Some

functions do exist across different database systems, but have slightly different meanings or outputs.

Another example, to get all the entries that were created in the last 60 days, with MySQL you can

run a query like the following:

SELECT * FROM Table WHERE CreatedDate > NOW() - INTERVAL 60 DAYS

This syntax does not exist in SQL Server.

Using the ADO.NET provider model and provider factory, you have two choices:

 Don’t use DBMS-specific features, instead relying on standard SQL to do what you want. For

example:

o Instead of using time functions, work with standard UNIX timestamps stored as

integers

o Or, use DATETIME fields but do time calculations in your application manually. For

example, to get the entries created in June, you could use standard SQL syntax:

5
 A lightweight, embedded database system. http://sqlite.org/

http://sqlite.org/

Pros and Cons of the ADO.NET Provider Model

Page 5 of 5

SELECT * FROM Table WHERE CreatedDate BETWEEN '2011-06-01' AND '2011-06-30'

 Run different SQL statements depending on the database system in use. This ties your

solution down to specific database systems, which is what the provider model aims to avoid.

o Often results in ugly code like:

If (Microsoft SQL Server)

 ...

elseif (MySQL)

 ...

4 Summary and Conclusion
The ADO.NET Provider Model has a number of advantages. It’s a single API that you can use to

access a large number of database systems, meaning you do not need to learn a new API when

switching to a different database system. However, this model is not without its flaws. Different SQL

dialects and DBMS-specific features make it hard to create a full database abstraction at such a low

level.

I believe that to use the ADO.NET Provider Model to its full potential, its usage needs to be

combined with a “query builder” that abstracts the building of SQL queries. An example of this

would be Microsoft’s Entity Framework. ADO.NET would handle all the low-level details (the actual

connection and sending/receiving of raw data), and the higher layer (Entity Framework or

NHibernate) would handle the actual query generation.

However, in performance-critical situations, it may be necessary to optimise the queries specifically

for the database system in use. In cases like this, it is best to stick to a single database system and

optimise your code specifically for that system.

5 References
Blakeley, JA, Campbell, D, Muralidhar, S & Nori, A 2006, 'The ADO.NET entity framework: making the
conceptual level real', SIGMOD Rec., vol. 35, no. 4, pp. 32-39,

Coles, M 2008, 'Common Table Expressions and Windowing Functions', in Pro T-SQL 2008
Programmer’s Guide, Apress, pp. 247-272.

Cunningham, C, Galindo-Legaria, CA & Graefe, G 2004, 'PIVOT and UNPIVOT: optimization and
execution strategies in an RDBMS', VLDB '04, pp. 998-1009,

Enterprise .NET Portfolio
Miscellaneous Stuff

Other Portfolio Stuff

Page 2 of 19

1 Table of Contents
2 Assignment 1 ... 4

2.1 Task 1: Programming Glossary .. 4

2.1.1 Boxing .. 4

2.1.2 Generics .. 4

2.1.3 Iterators / Yield ... 4

2.1.4 Extension Methods ... 5

2.1.5 Collection Initialisers ... 5

2.1.6 Lambda Expressions .. 6

2.2 Concept map ... 6

3 Three-Tier Architecture... 7

3.1 Data Access Layer (Assignment 3) .. 7

3.1.1 ADO.NET .. 7

3.1.2 LINQ to SQL ... 8

3.1.3 Entity Framework .. 8

3.1.4 Differences between classic and newer – Assignment 3 Task 4 9

3.1.5 Repository Pattern .. 9

3.2 Business Logic Layer (Assignment 6) ... 9

3.2.1 Table module .. 10

3.2.2 Transaction scripts .. 11

3.2.3 Domain model ... 11

3.2.4 Service layer .. 12

3.3 User Interface Layer .. 12

3.3.1 Client-side application... 12

3.3.2 Web-based .. 13

4 Web Services ... 14

4.1 Protocols ... 14

4.1.1 SOAP .. 14

4.1.2 REST ... 15

4.2 .NET Technologies ... 16

4.2.1 ASMX Web Services .. 16

4.2.2 Windows Communication Foundation (WCF) .. 16

4.3 Security concerns .. 17

5 COM+ (Assignment 4 Task 2) .. 17

Other Portfolio Stuff

Page 3 of 19

6 MSMQ (Microsoft Message Queues) .. 17

6.1 Advantages .. 17

7 Windows Services ... 17

7.1 Issues ... 18

7.1.1 Showing progress .. 18

7.1.2 Error handling ... 18

8 References .. 19

Other Portfolio Stuff

Page 4 of 19

2 Assignment 1

2.1 Task 1: Programming Glossary

2.1.1 Boxing

In C#, there are two different types – Reference types, and value types. Reference types, such as

most classes (including strings), are stored on the managed heap and passed around by value,

whereas value types, such as integers, booleans and structs, are passed by value and stored on the

stack. Boxing is the process of converting a value type into a reference type, by “wrapping” it inside

a System.Object (Microsoft 2010). Boxing is automatically done when using a value type as an object

(for example, for a parameter that accepts any object), whereas unboxing is explicit (you need to do

it yourself).

For example, this code will cause the integer “testInt” to be boxed:

int testInt = 42;

object testObj = testInt;

And this will unbox the integer (notice the explicit cast):

object testObj = 42;

int testInt = (int) testObj;

Previously, collections such as Dictionary and ArrayList needed to box/unbox integers to store them.

This issue was resolved with the introduction of generics (see next section)

2.1.2 Generics

Generics, added in .NET Framework 2.0, are basically .NET’s implementation of type parameters

(similar to templates in C++, and generics in Java). They allow you to create classes that take type

names as parameters, maximising code reuse and type safety. Generics are commonly used to

implement collection classes (see the System.Collections.Generic namespace for all the generic

collections that come built-in with the .NET Framework).

See the attached code for an example of a Stack implemented using generics (SimpleStack.cs)

2.1.3 Iterators / Yield

An enumerator is the magic that allows the foreach loop to work. Essentially, it tracks the current

state of the iteration, and allows you to move forward through the list. To implement an

enumerator, you need to implement the IEnumerator interface, which include a “Current” property

(returns the current item), and a MoveNext method (to move to the next item).

An iterator is an easy way to create an enumerator for a class. Instead of having to create a totally

separate IEnumerator implementation, the compiler does it for you. All you need to do is use the

“yield return” feature.

To add an iterator to the stack implementation from 2.2, a very small amount of code is needed:

public IEnumerator<T> GetEnumerator()

{

 while (HasItems)

 {

Other Portfolio Stuff

Page 5 of 19

 yield return Pop();

 }

}

This is used in a standard foreach loop:

foreach (string item in stringStack)

{

 Console.WriteLine(item);

}

2.1.4 Extension Methods

Extension methods allow you to “add” methods to existing classes, without having to modify the

type itself or create a derived type. Internally, extension methods are actually implemented as static

methods. These are similar to “mixins” in other languages (such as JavaScript), allowing you to add

new functionality to existing classes.

A simple example is adding an “IsEmail” method that checks if a string is a valid email address:

// Regex from http://www.regular-expressions.info/email.html

private static readonly Regex _emailRegex = new Regex(@"\b[A-Z0-9._%-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b",

RegexOptions.Compiled | RegexOptions.IgnoreCase);

public static bool IsEmail(this string str)

{

 return _emailRegex.IsMatch(str);

}

The “this” before the parameter type tells the compiler that this is an extension method. This

method would be called like any other string method:

string email = "daniel@dan.cx";

if (email.IsEmail())

 Console.WriteLine("Good! :)");

else

 Console.WriteLine("Bad :(");

2.1.5 Collection Initialisers

A collection initialiser allows you to easy initialise a collection at runtime, using a simplified syntax.

This saves you having to call the Add method over and over again.

Instead of doing this:

IList<string> cities = new List<string>();

cities.Add("Melbourne");

cities.Add("Sydney");

cities.Add("Adelaide");

// ... and so on

You can simply do this:

List<string> cities = new List<string> {"Melbourne", "Sydney", "Adelaide", ...};

This is very similar to the array initialisation syntax in languages such as C and C++.

Other Portfolio Stuff

Page 6 of 19

2.1.6 Lambda Expressions

Lambda expressions are essentially C#’s version of anonymous or inline functions. Lambda functions

were added in the .NET Framework 3.5, and simplify the syntax required for delegates. Previously,

delegates were required to be separate methods, but with C# 3.5 and higher, they can be inline.

Given the list from the “collection initialisers” section above, the following code could be used to

retrieve all the cities beginning with the letter A:

List<string> startsWithA = suburbs.FindAll(item => item.StartsWith("A"));

foreach (string item in startsWithA)

{

 Console.WriteLine(item);

}

LINQ uses many technologies including extension methods and lambda expressions in order to add a

query language into the .NET Framework. It lets you query anything (databases, XML files,

collections) using a language similar to SQL (or, alternatively, with normal method syntax). The

FindAll line above could be replaced with the following to make use of LINQ:

var startsWithA = suburbs.Where(item => item.StartsWith("A"));

2.2 Concept map
The concept map below shows how all the above concepts are related:

Other Portfolio Stuff

Page 7 of 19

3 Three-Tier Architecture
Most business .NET applications use some sort of three-tier architecture. This splits a system into a

number of distinct layers – Data Access Layer, Business Logic Layer, and User interface layer. Layers

are restricted to which other layers they can talk to – They can only talk to the layer directly below

them, and themselves. The User Interface layer can only talk to the business logic layer, and the

business logic layer can only talk to the User interface layer.

An alternate design pattern is MVC (Model-View-Controller), which I talk about in a short report.

MVC follows a lot of the same principles, but goes about them in a slightly different way.

3.1 Data Access Layer (Assignment 3)
The data access layer generally connects to a database of some sort, and performs CRUD (Create,

Read, Update and Delete) actions. However, the DAL is not database-specific – The data could come

from anywhere (eg. a webservice that accesses a third-party system). Code that interacts with a

third-party system of some sort would generally be kept in a data access layer.

There are a number of database technologies that are commonly used by .NET developers to

interact with databases. Some of the most common are listed below:

3.1.1 ADO.NET

ADO.NET is the “classic” method of accessing databases from .NET. It was designed to be an

evolution of ADO (ActiveX Data Objects), which was the technology used for database access in ASP.

It uses a table module approach (via DataSets) to accessing the database. Even if not used directly,

it’s generally used as the backend for every other .NET database access technology, as it’s a proven

technology that comes built-in with every .NET version.

ADO.NET uses an adapter pattern for interfacing with different database systems in a consistant

way. As I explain later, there are both advantages and disadvantages of this approach.

A technology called LINQ to DataSets is available, but this is generally only used to filter returned

DataSets. For using LINQ to query a database, a technology such as LINQ to SQL or Entity Framework

should be used. These are discussed in sections 3.1.2 and 3.1.3 respectively.

Pros:

 Available in every .NET Framework version

 Supports a large number of DBMSes (any that have an adapter available), including

Microsoft SQL Server and variants (Express, CE), SQLite, MySQL, Oracle and many more.

Cons:

 May be harder to use than newer technologies. ADO.NET is not as “refined” as newer

technologies.

 Need to write queries manually (although this can be a benefit, because you can optimise

them)

Other Portfolio Stuff

Page 8 of 19

3.1.2 LINQ to SQL

LINQ to SQL is a technology that lets you use LINQ queries to query a database. It was the first

object-relational system created by Microsoft for the .NET Framework. It is relatively easy to use, as

it uses a drag-and-drop designer in Visual Studio to create the classes, and normal LINQ queries to

query the database. It supports lazy loading (only loading data when required), which is turned on by

default.

Pros:

 Relatively easy to use

 Drag and drop UI in Visual Studio

 Lazy loading supported

Cons:

 Only supports Microsoft SQL Server and variants (SQL Server Express, SQL Server CE)

 Uncertain future? Entity Framework seems to be the way of the future and has more

advantages, so development of LINQ to SQL is uncertain

 Only supports a 1-to-1 mapping between the database and the classes

3.1.3 Entity Framework

Entity Framework is the latest data access technology from Microsoft. Similar to LINQ to SQL, it lets

you use LINQ queries to query the database, instead of having to write SQL (Blakeley et al. 2006). It

supports complex models, including inheritance to model “is-a” relationships (Thompson 2007).

Unlike LINQ to SQL, it is built on top of the ADO.NET adapter model, meaning that it supports all

database providers that ADO.NET supports.

Entity Framework 4.1 has added a feature called “Entity First” – This lets you create your POCOs

(Plain old CLR/C# Objects) and map these, instead of having to use automatically generated classes.

It also lets you create a whole database schema based on the mapping you create. This means you

don’t need to write any DDL (Data Definition Language) code, you just need to create your C#

classes, and the database will be generated for you.

Mapping in the Entity Framework is done on three levels:

1. A conceptual model (CSDL file) – This maps all the entities that are used in the code itself.

This mdoels how you “see” the database in code.

2. A storage model (SSDL) – This contains a one-to-one mapping of the underlying database

structure. This models how the database exactly.

3. A mapping (MSDL file) – This maps the conceptual model to the storage model. This is used

to map how the data is stored to how the data is used.

Generally, these three files are combined together into a single Entity Data Model (EDMX) file.

Pros:

 Supports large number of DBMSes (same as ADO.NET)

 Very powerful

Other Portfolio Stuff

Page 9 of 19

 Very flexible – The mapping system gives the framework a large amount of flexibility.

 Relatively easy to get started with

Cons:

 Complex – Due to the complexity of the mapping system, using the Entity Framework is a lot

harder than LINQ to SQL.

3.1.4 Differences between classic and newer – Assignment 3 Task 4

The main difference between newer technologies (such as LINQ to SQL and Entity Framework) and

older technologies like DataReaders and DataSets is that with the older technologies, you are

generally required to build the SQL queries yourself. These could either be done as stored

procedures, or as normal SQL statements. With LINQ to SQL and Entity Framework, the SQL queries

are built automatically by the framework.

Because they are automatically generated, queries generated with LINQ to SQL and Entity

Framework can have several issues. One of the most common issues is the “SELECT N+1” problem1 –

When joins are done incorrectly, significantly more queries are done than are needed (one for each

sub-object). This problem is generally not possible when using raw ADO.NET, as you write your

queries manually.

Additionally, since raw ADO.NET is a lower level of abstraction, it’s generally faster than using a

higher level of abstraction such as Entity Framework or LINQ to SQL (Hanselman 2010). Small code

that is very performance critical is probably best off using a DataReader, but for most uses, Entity

Framework is quite powerful and handy.

3.1.5 Repository Pattern

While not a database access technology, the repository pattern is often a very important pattern to

use when designing a data access layer, especially when using the domain model pattern (described

in more detail later on). A repository is basically a class that handles CRUD operations for a certain

table. This allows you to keep data access code separate from the entities themselves. The opposite

would be the Active Record pattern, which has the CRUD operations as methods on the entities

themselves.

The repository pattern makes it very easy to create “mock” objects for unit testing. A mock object is

an object that simulates functionality of a normal object. When doing unit tests, you do not want to

use an actual database, as the data could be different every time. Instead, you use mock objects that

return fake data (and handle inserts and deletes internally). If all your data access code is contained

in one section (repository classes), it’s very easy to create mocks for the data.

3.2 Business Logic Layer (Assignment 6)
The business logic layer is responsible for handling all business logic, which includes enforcing

business rules, and calling the required methods in the data access layer. In other words, the

business logic layer is all the code that makes the application actually work (otherwise the

application would just be a simple UI on top of a database). Business rules are basically constraints

1
 See http://stackoverflow.com/questions/97197/what-is-the-n1-selects-problem for more information

http://stackoverflow.com/questions/97197/what-is-the-n1-selects-problem

Other Portfolio Stuff

Page 10 of 19

that exist in your business model. For example, if you were writing an online shopping system, you

may have business rules such as:

 Items can only be purchased if they are in stock

 If an item is on special, customers are limited to a quantity of 5

These rules are all enforced in the business logic layer. Generally, if any of the rules are violated, an

exception is thrown (which can then be caught by the higher layer, the User Interface layer). If all the

business rules are satisfied, the business layer uses the data access layer to persist any state changes

to the database.

The business layer is designed so it’s independent of both the layer above (the UI layer) and the

layer below (the Data Access Layer). Either layer should be able to be swapped out and replaced

with an alternative implementation, with no issues in the business logic layer. And the business layer

should certainly NOT have any UI or database code in it! This makes it highly reusable, and increases

cohesion.

As with the data access layer, there are quite a number of design patterns that can be used to create

a business logic layer. In his book, Martin Fowler describes some of the most common patterns used

for creating business logic layers (2002). I’ve summarised the most common patterns below.

3.2.1 Table module

The table module pattern organises the

domain with one class per table in the

database. These classes acts as

“managers” for the tables – A single

instance of the class is used to perform

CRUD operations to the table (compare

this to the domain model pattern in

section 3.2.3, which uses one object per

entity in the database). Data is generally

returned in the form of DataSets.

Table modules are quite simple and easy to implement. They generally work well when your domain

is simple and maps directly to the tables in your database, and you’re able to use ADO.NET DataSets.

Pros:

 Designed to work well with ADO.NET DataSets. DataSets use this pattern themselves, so it is

quite easy to implement (eg. a DTO DataSet with no DataAdapters can be returned).

 Easier to manage complexity than Transaction Scripts

 Business logic can be shared between tables

Cons:

 Doesn’t really use object-oriented principles. As there is one object that represents multiple

rows, the table modules can’t really collaborate with other table modules too well.

Figure 1: Class diagram for a business layer using the table module
pattern

Other Portfolio Stuff

Page 11 of 19

3.2.2 Transaction scripts

With the transaction script design

pattern, each business function is

represented in a procedural way. Each

business object has a class in the data

layer, and each business transaction

has its own procedure in the data layer objects. This is one of the simplest ways of organising a

business layer, but it often results in a lot of repetition.

Transaction scripts are good for small applications that have a small amount of business logic. As the

size of the business domain grows, so too will the number of transaction scripts. These can become

very hard to manage and keep consistent (code duplication will result).

Pros:

 Simple to understand – As each business transaction is a separate procedural method, it is

quite easy to see what the code is doing

 Fast initial development, as the scripts are all linear and relatively self-contained

Cons:

 With a large business domain, there will be a large number of transaction scripts. These can

be hard to manage.

 Hard to share business logic

3.2.3 Domain model

The domain model pattern represents

each entity as a POCO (Plain Old CLR

Object) class. All the database access

logic is abstracted away, and a nice

object-oriented view of the database

is provided to the user.

Objects interact with each other in an

object-oriented fashion – Using

methods of other objects. One

disadvantage of this pattern is the

mapping between the database and objects can be rather complex, although this is often solved by

using a framework or toolkit like NHibernate or Entity Framework.

The domain model pattern is great for complex systems, which have a lot of business rules involving

collaboration between different entities. As it uses object-oriented principles, the models can

collaborate with each other if required.

Pros:

Figure 2: Class diagram for a business layer using the transaction
scripts pattern

Figure 3: Class diagram of a business layer using the domain model
pattern

Other Portfolio Stuff

Page 12 of 19

 Uses object-oriented principles. In an object-oriented language, this feels more “natural”

compared to the other patterns

 Complexity can be better managed

Cons:

 Can’t use ADO.NET DataSets. This is not really an issue when using an ORM library, however.

3.2.4 Service layer

A service layer is a layer that sits on top of a domain model. It abstracts away from the exact

business logic implementation method, providing a “transaction script”-like view of the application.

The logic is implemented in the service layer, however, exactly how it’s implemented doesn’t matter

to the consumer (this could be using one of the aforementioned patterns, or a different pattern not

mentioned in this portfolio).

Pros:

 Abstracts away from internal structure of domain model

Cons:

 Additional layer to maintain

 Performance may not be as good as other patterns, as another layer is being added)

3.3 User Interface Layer
The topmost layer of a three-layer architecture is a user interface layer. This is the layer that the user

sees and interfaces with, and hence, contains a lot of the “shiny” features that are visible to the

user. Like the other layers, the UI layer is not dependent on any implementation of the business

layer. It should be able to be swapped with a totally different business layer implementation, and

still work correctly. Also like the other layers, the User Interface only communicates with the layer

directly below it (business logic layer); it never uses the data access layer directly.

There are two broad categories of user interface layers – Client-side applications, and web

applications. Below these broad categories, there are more specific technologies.

3.3.1 Client-side application

Building a client-side applications is the “traditional” approach for developing software applications.

This involves developing an application that the client will run on their computer. These are the

perfect choice for programs that are 100% offline, or applications that need a “rich” / very

responsive user interface. In the land of .NET, the most common client-side application technologies

are Windows forms, and Windows Presentation Foundation.

Other Portfolio Stuff

Page 13 of 19

3.3.1.1 Windows Forms

Windows Forms was the first GUI toolkit for the

.NET Framework. It was loosely based on

Microsoft’s older GUI technologies, such as Forms

2.0 for Microsoft Office, and the GUI toolkit

included in Visual Basic 6.0. Designing the forms is

done via a designer in Visual Studio.

Unlike Visual Basic 6 (where the code for the form

is all hidden), the Visual Studio GUI designer

actually generates code to create the form and all

its controls. This means you can look at the code

that creates the GUI, to see how it works and what it’s actually doing. The code is all stored in a

“partial class”, meaning it doesn’t get in the way when you’re writing your code.

The Form class is the base of all Windows Forms applications. The Form class, as the name infers, is a

form in your application. The form class then contains a number of controls (all of which have the

“Control” class as a base). The controls are responsible for rendering themselves – In a way, they’re

self-contained. You can also make your own custom controls, which can be easily reused in multiple

Windows Forms applications.

Like previous GUI technologies, Windows Forms uses an event-driven programming paradigm.

Whenever something happens on the form (for example, a mouse click or drag, or a keypress), an

event is fired. You can attach event listeners to these events, in order to make useful things happen

when they occur. This is more efficient than old-school GUI technologies, which required polling to

check whether something had happened.

3.3.1.2 WPF (Windows Presentation Foundation)

Windows Presentation Foundation is a newer GUI technology from Microsoft. Instead of using

generated code, WPF uses an XML-based file format called XAML to store information about the GUI

and its components. I have not really used WPF in the past so do not really know much about its

advantages and disadvantages.

3.3.2 Web-based

More recently, web-based applications have started to become more popular. These are quite nice

as they are not dependent on the client operating system, and can be used from remote locations

(without having to install software on every computer the client uses). For a lot of database-driven

applications where most of the processing is done on a server somewhere, web-based applications

are a natural approach to development.

3.3.2.1 ASP.NET Web Forms

A detailed writeup on ASP.NET web forms is attached separately as a short report.

Figure 4: Example of a GUI built with Windows Forms

Other Portfolio Stuff

Page 14 of 19

3.3.2.2 ASP.NET MVC

The MVC pattern is an alternative design pattern to the

classical three-tier architecture. However, the ASP.NET MVC

implementation could also be considered a “UI layer”, as it

can be used on top of an existing business layer and data

access layer implementation. See the short report on MVC

for more details on the MVC pattern.

Following on from the popularity of MVC frameworks, both

for other languages (Ruby on Rails, CodeIgniter and CakePHP

for PHP, etc.) and for .NET (Castle MonoRail and Spring

Framework.NET), Microsoft decided to create their own MVC

framework.

ASP.NET MVC has some major advantages over ASP.NET web

forms:

 It is unit testable. Controllers are easily instantiated as

they do not go through the complex ASP.NET Page

Life Cycle.

 It supports URL routing – Instead of ugly URLs, URLs can be short and nice.

 HTML is all hand-written, meaning it’s a lot lighter and easier to style than the often ugly

autogenerated code output by ASP.NET web forms

 No ViewState fields bloating the page size!

4 Web Services
With the increasing usage of the internet and web-based applications came web services.

Essentially, web services are a method of communicating with remote servers using well-known

standards.

As they use standard HTTP requests, web services are almost always fully interoperable between

operating systems and frameworks (and custom client code is not required). A web service written in

ASP.NET running on a Windows server can be consumed by a Java client running on a Linux

computer with no issues. Security does not need to be message-level, it can be provided using

standard HTTP over SSL (otherwise known as HTTPS), which means custom encryption is not needed

(and helps with interoperability).

4.1 Protocols
A number of different web service protocols are available for use today. Some of the most common

are:

4.1.1 SOAP

SOAP is an XML-based message protocol. A SOAP message contains two parts, a header and a body.

The header contains metadata (such as any authentication information), and the body contains the

actual payload.

Figure 5: Example of a web-based form, a
common part of a web application

Other Portfolio Stuff

Page 15 of 19

4.1.1.1 WSDL

WSDL documents are used to describe SOAP web services, and their methods. WSDL documents

consist of 5 sections (Wikipedia 2011b):

 Services

 Ports (Endpoints in WSDL 2.0)

o Defines address (“connection point”) to web service

o Generally a HTTP or HTTPS URL

 Bindings

o Defines interface, SOAP binding style, and transport (protocol, usually HTTP)

 Messages

o Information about messages needed to perform operations

 Types

o XML schema to describe custom types used for the SOAP calls.

o Can either be inline, or reference to a schema URL

4.1.1.2 Discovery

So you’ve built an awesome web service... How are people going to find it? This issue is what led to

the development of UDDI (Universal Description Discovery and Integration). UDDI is essentially a

public registry where you could list your web services’ WSDL documents, and other people could use

the UDDI service to “discover” your web services.

UDDI was originally proposed as a web standard, however, it did not gain the traction its designers

had hoped it would gain (Wikipedia 2011a). Back in 2006, Microsoft, IBM and SAP have all closed

down their public UDDI servers, and the UDDI system slowly faded away.

Today, it still exists, but is very rarely used. Recently, Google have introduced their own discovery

service for their APIs that is very similar to UDDI2 except it doesn’t use XML or describe SOAP

services.

4.1.2 REST

REST, unlike SOAP, is not a protocol as such. It is actually an architecture. REST (as it applies to HTTP)

is basically a number of constraints. As long as these constraints are followed, the service can be

referred to as RESTful (Richardson & Ruby 2007). The main constraints are the following:

 HTTP Verbs – HTTP verbs should be used for the corresponding actions. GET for retrieving

data, PUT and POST for storing data, and DELETE for deleting data.

 URIs – URIs should be clean and point to resources. They should not have any verbs in them.

 Stateless – Client-server communication is stateless, and every request from the client

contains all the information required to perform the request

 Cacheable – Clients should be able to cache the results of most GET requests. Resources

should therefore define themselves as cacheable and specify an appropriate expiration time

The below table shows an example of how certain URIs would be handled based on the HTTP verb

used:

2
 See http://googlecode.blogspot.com/2011/05/google-apis-discovery-service-one-api.html

http://googlecode.blogspot.com/2011/05/google-apis-discovery-service-one-api.html

Other Portfolio Stuff

Page 16 of 19

URI GET PUT POST DELETE

/Products Retrieve a list of
all products,
including their
URLs

Replace the
entire products
collection with a
new collection

Create a new
product and
return its URL

Delete all the
products

/Products/123 Retrieve product
123

Replace product
123

Replace product
123

Delete product
123

The output from a REST web service can use any format, but generally either JSON or XML is used.

4.2 .NET Technologies
There are several .NET technologies that implement these various web service protocols. Some of

the most common are listed below:

4.2.1 ASMX Web Services

ASMX web services (otherwise known as “ASP.NET Web Services”) are the classic method of creating

SOAP web services using the ASP.NET technology. This technology was Microsoft’s initial attempt at

creating a web service framework. With ASP.NET Web Services, you simply need to create a C# class

with methods for each web service method, and the framework will automatically (and dynamically)

generate the corresponding WSDL document at runtime. To consume the service, you simply use the

“Add Web Reference” feature in Visual Studio, which will automatically generate a proxy class used

to call the web service’s methods.

It is a legacy technology that’s not really recommended for new development. It’s quite an old

technology and many advances have been made since then. New .NET web service development

should be done with a newer technology, such as WCF.

4.2.2 Windows Communication Foundation (WCF)

WCF was originally introduced as a part of .NET Framework 3.0 (formerly known as the WinFX

project). It is a newer technology, and hence is Microsoft’s currently recommended framework for

web services. It supports asynchronous (also known as non-blocking) calls, and one-way calls (for

example, to a message queue). WCF can be used to implement both SOAP and REST web services.

WCF has quite a number of benefits over the old ASP.NET web services technology. One major

advantage is that it is transport-agnostic. While it can be used to create HTTP-based web services,

WCF also supports multiple other methods of transport, including named pipes, MSMQ (see section

6) and Net.tcp (a .NET-specific, fast, compressed binary protocol)

Additionally, WCF doesn’t depend on IIS (unlike ASP.NET web services). WCF services have multiple

hosting options, including inside IIS, in a windows service, in a normal application (console or even

Winforms or WPF), or via Windows Process Activation3. This, combined with the protocol-

independent and transport-agnostic API, makes WCF incredibly flexible.). You can change the

hosting method at any time, and you can change the transport you’re using simply by editing your

service’s configuration file – Your code is never dependent on any particular transport being used.

3
 http://technet.microsoft.com/en-us/library/cc735229.aspx

http://technet.microsoft.com/en-us/library/cc735229.aspx

Other Portfolio Stuff

Page 17 of 19

4.3 Security concerns
I’ve written about security concerns for web services in a separate short report.

5 COM+ (Assignment 4 Task 2)
COM+ is an evolution of the older COM technology from Microsoft. It allows for distributed

transactions (via DCOM – Distributed COM) and resource pooling. One of the benefits of COM+ is

that it allows code to run “out of process” (outside your application, in a separate process).

The component services administration UI has several options:

 Activation – Whether the component is activated in the caller’s context or not. Depending

on how the server is compiled, this may require you to recompile the server. A number of

conditions need to be met in order to allow the component to be activated in the caller’s

context (Microsoft 2007).

 Security – Whether the client has to be authenticated to use the component. This can be

changed without recompiling the server, but may require some changes to the client.

 Pooling – Pooling is when instances of a component are kept active, ready for use by any

client that requests the component. This can have significant performance benefits, for

example if the component takes a while to initialise. This option can be changed without

recompiling or breaking the client or server.

6 MSMQ (Microsoft Message Queues)
MSMQ is a technology used for communicating between several different systems. The systems

could be running on the same machine, or they could be distributed. Communication is usually one-

way, with each message containing all the data required for a single business transaction.

6.1 Advantages
There are a number of advantages of using Microsoft Message Queues for communication:

 Highly scalable – Many machines can run in parallel, all processing different incoming

messages

 Highly available – Messages can be posted, even when the server is offline. If the server is

offline when messages are posted, they are queued for delivery as soon as it comes back

online

 Asynchronous – As the messages are only one-way, the system doesn’t need to wait for a

reply.

7 Windows Services
Windows services are basically long-running tasks with no user interface. They are generally used for

background processing tasks, where a user interface would not be required. Windows itself has a

number of built-in services, including things like search indexing (indexing your hard drive so that

searches are fast), IIS web server, and time synchronisation. Common uses for services include

Other Portfolio Stuff

Page 18 of 19

things like MSMQ processing applications (see MSMQ section, above), WCF communication hosts,

any other sort of background processing, and so on.

Windows services are similar to normal applications, except they have multiple entry points. Instead

of a single Main method in a static class, services inherit from the ServiceBase class and override two

methods:

 OnStart – This method is called when the service is started. Like the Main method of a

normal Windows application, this method is passed an array of command-line arguments.

Unlike a normal Windows application, the command-line arguments are very rarely useful.

Generally, this method creates a new thread for the service to execute in. The OnStart

method must return, so the service generally needs to run in a different thread.

 OnStop – This method is called when the service is stopped. The closest equivalent in a

normal Windows Forms application would be the FormClosing event on a Form. Generally,

this method would stop the thread the service is running on, and run any cleanup code,

including closing any shared resources and flushing any log files.

Additionally, there are several other methods that can be overridden to provide additional

functionality to the service. Notably, to enable pausing and resuming the service, the

CanPauseAndContinue property needs to be set to true, and the following two methods need to be

overridden:

 OnPause – This method is called when the service is paused. This would generally stop the

thread the service is running on and save its state somewhere. While all resources used by

the service don’t have to be released, this method will generally release some of them (if

possible)

 OnContinue – This method is called when the service is continued (“unpaused”). This would

generally restart the service thread, and load its state that was previously saved in the

OnPause method. The service should resume from the exact state it was left in when it was

paused.

Note that pause and continue support is optional. Some services don’t have a use for it and hence

will not implement it.

7.1 Issues

7.1.1 Showing progress

One of the most common issues encountered when designing a service is how to show progress to

the user. Since there is no user interface, it is quite hard to actually display data to the user. One

possible solution to this is to have some sort of application that interacts with the service, and

displays status information retrieved from the service.

7.1.2 Error handling

Following on from the first issue, another issue with windows services is handling of unexpected

exceptions. With a normal application, unhandled exceptions will display an error message and the

application will crash. With a service, this is normally not acceptable, as services will often be

running on a server in the background (nobody will ever see the error message alert).

Other Portfolio Stuff

Page 19 of 19

One solution to this is to have a global exception handler for the whole service, and use the error log

to log any errors. If the service is database driven, an alternative to using the error log is to use a

database for storing errors. In addition to storing the errors, for serious exceptions, quite often

emails are sent to the developers informing them of the exception.

8 References
Blakeley, JA, Campbell, D, Muralidhar, S & Nori, A 2006, 'The ADO.NET entity framework: making the
conceptual level real', SIGMOD Rec., vol. 35, no. 4, pp. 32-39,

Fowler, M 2002, Patterns of Enterprise Application Architecture, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Hanselman, S 2010, Extending NerdDinner: Exploring Different Database Options, viewed 2011-06-
01,
<http://www.hanselman.com/blog/ExtendingNerdDinnerExploringDifferentDatabaseOptions.aspx>.

Microsoft 2007, Q261096: How to activate a COM+ component in its caller's context, viewed 2011-
06-04, <http://support.microsoft.com/kb/261096>.

Microsoft 2010, Boxing and Unboxing (C# Programming Guide), viewed 2011-05-31,
<http://msdn.microsoft.com/en-us/library/yz2be5wk.aspx>.

Richardson, L & Ruby, S 2007, RESTful web services, O'Reilly Media.

Thompson, E 2007, Inheritance in the Entity Framework, viewed 2011-06-04,
<http://blogs.msdn.com/b/adonet/archive/2007/03/15/inheritance-in-the-entity-framework.aspx>.

Wikipedia 2011a, Universal Description Discovery and Integration - Wikipedia, The Free Encyclopedia,
viewed 2011-05-17,
<http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration>.

Wikipedia 2011b, Web Services Description Language - Wikipedia, The Free Encyclopedia, viewed
2011-05-15, <http://en.wikipedia.org/wiki/WSDL>.

http://www.hanselman.com/blog/ExtendingNerdDinnerExploringDifferentDatabaseOptions.aspx%3e
http://support.microsoft.com/kb/261096%3e
http://msdn.microsoft.com/en-us/library/yz2be5wk.aspx%3e
http://blogs.msdn.com/b/adonet/archive/2007/03/15/inheritance-in-the-entity-framework.aspx%3e
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration%3e
http://en.wikipedia.org/wiki/WSDL%3e

Assignments

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
3
\
A
s
s
i
g
n
m
e
n
t
0
3
\
A
s
s
i
g
n
m
e
n
t
0
3
.
T
a
s
k
2
\
P
r
o
g
r
a
m
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
C
o
n
f
i
g
u
r
a
t
i
o
n
;

3
u
s
i
n
g

S
y
s
t
e
m
.
D
a
t
a
.
C
o
m
m
o
n
;

45
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
3
.
T
a
s
k
2

6
{

7

c
l
a
s
s

P
r
o
g
r
a
m

8

{

9

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)

1
0

{

1
1

C
o
n
n
e
c
t
i
o
n
S
t
r
i
n
g
S
e
t
t
i
n
g
s

c
o
n
n
e
c
t
i
o
n
S
t
r
i
n
g

=

C
o
n
f
i
g
u
r
a
t
i
o
n
M
a
n
a
g
e
r
.
C
o
n
n
e
c
t
i
o
n
S
t
r
i
n
g
s
[

"
m
y
D
a
t
a
b
a
s
e
"
]
;

1
2

1
3

C
o
n
s
o
l
e
.
W
r
i
t
e
(
"
U
s
i
n
g

{
0
}

w
i
t
h

c
o
n
n
e
c
t
i
o
n

s
t
r
i
n
g

{
1
}
\
r
\
n
\
r
\
n
"
,

c
o
n
n
e
c
t
i
o
n
S
t
r
i
n
g
.
P
r
o
v
i
d
e
r
N
a
m
e
,

1
4

c
o
n
n
e
c
t
i
o
n
S
t
r
i
n
g
.
C
o
n
n
e
c
t
i
o
n
S
t
r
i
n
g
)
;

1
5

1
6

D
b
P
r
o
v
i
d
e
r
F
a
c
t
o
r
y

p
r
o
v
i
d
e
r
F
a
c
t
o
r
y

=

D
b
P
r
o
v
i
d
e
r
F
a
c
t
o
r
i
e
s
.
G
e
t
F
a
c
t
o
r
y
(
c
o
n
n
e
c
t
i
o
n
S
t
r
i
n
g
.

P
r
o
v
i
d
e
r
N
a
m
e
)
;

1
7

D
b
C
o
n
n
e
c
t
i
o
n

c
o
n
n

=

p
r
o
v
i
d
e
r
F
a
c
t
o
r
y
.
C
r
e
a
t
e
C
o
n
n
e
c
t
i
o
n
(
)
;

1
8

c
o
n
n
.
C
o
n
n
e
c
t
i
o
n
S
t
r
i
n
g

=

c
o
n
n
e
c
t
i
o
n
S
t
r
i
n
g
.
C
o
n
n
e
c
t
i
o
n
S
t
r
i
n
g
;

1
9

c
o
n
n
.
O
p
e
n
(
)
;

2
0

2
1

D
b
C
o
m
m
a
n
d

c
o
m
m
a
n
d

=

c
o
n
n
.
C
r
e
a
t
e
C
o
m
m
a
n
d
(
)
;

2
2

c
o
m
m
a
n
d
.
C
o
m
m
a
n
d
T
e
x
t

=

@
"

2
3

S
E
L
E
C
T

g
.
N
a
m
e
,

t
.
G
a
d
g
e
t
T
y
p
e
N
a
m
e

A
S

G
a
d
g
e
t
T
y
p
e
,

m
.
N
a
m
e

A
S

M
a
n
u
f
a
c
t
u
r
e
r
N
a
m
e

2
4

F
R
O
M

G
a
d
g
e
t

g

2
5

L
E
F
T

O
U
T
E
R

J
O
I
N

G
a
d
g
e
t
T
y
p
e

t

O
N

g
.
G
a
d
g
e
t
T
y
p
e

=

t
.
G
a
d
g
e
t
T
y
p
e
I
D

2
6

L
E
F
T

O
U
T
E
R

J
O
I
N

M
a
n
u
f
a
c
t
u
r
e
r

m

O
N

g
.
M
a
n
u
f
a
c
t
u
r
e
r

=

m
.
M
a
n
u
f
a
c
t
u
r
e
r
I
D

2
7

O
R
D
E
R

B
Y

g
.
n
a
m
e
"
;

2
8

D
b
D
a
t
a
R
e
a
d
e
r

r
e
a
d
e
r

=

c
o
m
m
a
n
d
.
E
x
e
c
u
t
e
R
e
a
d
e
r
(
)
;

2
9

w
h
i
l
e

(
r
e
a
d
e
r
.
R
e
a
d
(
)
)

3
0

{

3
1

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
{
0
}

b
y

{
1
}

(
{
2
}
)
"
,

r
e
a
d
e
r
[
"
N
a
m
e
"
]
,

r
e
a
d
e
r
[
"
M
a
n
u
f
a
c
t
u
r
e
r
N
a
m
e
"
]
,

r
e
a
d
e
r

[
"
G
a
d
g
e
t
T
y
p
e
"
]
)
;

3
2

}

3
3

3
4

r
e
a
d
e
r
.
D
i
s
p
o
s
e
(
)
;

3
5

c
o
m
m
a
n
d
.
D
i
s
p
o
s
e
(
)
;

3
6

c
o
n
n
.
D
i
s
p
o
s
e
(
)
;

3
7

3
8

C
o
n
s
o
l
e
.
R
e
a
d
K
e
y
(
)
;

3
9

}

4
0

}

4
1

}

4
2

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
3
\
A
s
s
i
g
n
m
e
n
t
0
3
\
A
s
s
i
g
n
m
e
n
t
0
3
.
T
a
s
k
3
\
P
r
o
g
r
a
m
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;

3
u
s
i
n
g

S
y
s
t
e
m
.
D
a
t
a
.
L
i
n
q
;

4
u
s
i
n
g

S
y
s
t
e
m
.
L
i
n
q
;

5
u
s
i
n
g

A
s
s
i
g
n
m
e
n
t
0
3
.
T
a
s
k
3
.
Q
u
e
r
y
R
e
c
o
r
d
e
r
;

67
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
3
.
T
a
s
k
3

8
{

9

c
l
a
s
s

P
r
o
g
r
a
m

1
0

{

1
1

/
/
/

<
s
u
m
m
a
r
y
>

1
2

/
/
/

C
o
n
n
e
c
t
i
o
n

s
t
r
i
n
g

f
o
r

t
h
e

d
a
t
a
b
a
s
e

1
3

/
/
/

<
/
s
u
m
m
a
r
y
>

1
4

p
r
o
t
e
c
t
e
d

c
o
n
s
t

s
t
r
i
n
g

C
O
N
N
E
C
T
I
O
N
_
S
T
R
I
N
G

=

@
"
D
a
t
a

S
o
u
r
c
e
=
D
A
N
I
E
L
-
L
A
P
T
O
P
2
\
S
Q
L
E
X
P
R
E
S
S
;
I
n
i
t
i
a
l

C
a
t
a
l
o
g
=
G
a
d
g
e
t
s
;
I
n
t
e
g
r
a
t
e
d

S
e
c
u
r
i
t
y
=
T
r
u
e
;
P
o
o
l
i
n
g
=
F
a
l
s
e
"
;

1
5

/
/
/

<
s
u
m
m
a
r
y
>

1
6

/
/
/

H
o
w

m
a
n
y

i
t
e
m
s

t
o

d
i
s
p
l
a
y

p
e
r

p
a
g
e

1
7

/
/
/

<
/
s
u
m
m
a
r
y
>

1
8

p
r
o
t
e
c
t
e
d

c
o
n
s
t

i
n
t

P
E
R
_
P
A
G
E

=

5
;

1
9

2
0

/
/
/

<
s
u
m
m
a
r
y
>

2
1

/
/
/

M
a
i
n

e
n
t
r
y

p
o
i
n
t

t
o

t
h
e

a
p
p
l
i
c
a
t
i
o
n

2
2

/
/
/

<
/
s
u
m
m
a
r
y
>

2
3

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
a
r
g
s
"
>
<
/
p
a
r
a
m
>

2
4

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)

2
5

{

2
6

G
a
d
g
e
t
s
D
a
t
a
C
o
n
t
e
x
t

c
o
n
t
e
x
t

=

n
e
w

G
a
d
g
e
t
s
D
a
t
a
C
o
n
t
e
x
t
(
C
O
N
N
E
C
T
I
O
N
_
S
T
R
I
N
G
)
;

2
7

/
/
c
o
n
t
e
x
t
.
L
o
g

=

C
o
n
s
o
l
e
.
O
u
t
;

2
8

Q
u
e
r
y
R
e
c
o
r
d
e
r
.
Q
u
e
r
y
R
e
c
o
r
d
e
r

q
u
e
r
y
R
e
c
o
r
d
e
r

=

n
e
w

Q
u
e
r
y
R
e
c
o
r
d
e
r
.
Q
u
e
r
y
R
e
c
o
r
d
e
r
(
)
;

2
9

c
o
n
t
e
x
t
.
L
o
g

=

q
u
e
r
y
R
e
c
o
r
d
e
r
;

3
0

3
1

/
/

T
e
l
l

L
I
N
Q
-
t
o
-
S
Q
L

t
o

j
o
i
n

t
o

m
a
n
u
f
a
c
t
u
r
e
r

a
n
d

t
y
p
e

w
h
e
n

l
o
a
d
i
n
g
,

a
s

w
e

n
e
e
d

d
a
t
a

3
2

/
/

f
r
o
m

b
o
t
h

t
h
e
s
e

t
a
b
l
e
s
.

3
3

D
a
t
a
L
o
a
d
O
p
t
i
o
n
s

l
o
a
d
O
p
t
i
o
n
s

=

n
e
w

D
a
t
a
L
o
a
d
O
p
t
i
o
n
s
(
)
;

3
4

l
o
a
d
O
p
t
i
o
n
s
.
L
o
a
d
W
i
t
h
<
G
a
d
g
e
t
>
(
g
a
d
g
e
t

=
>

g
a
d
g
e
t
.
M
a
n
u
f
a
c
t
u
r
e
r
1
)
;

3
5

l
o
a
d
O
p
t
i
o
n
s
.
L
o
a
d
W
i
t
h
<
G
a
d
g
e
t
>
(
g
a
d
g
e
t

=
>

g
a
d
g
e
t
.
G
a
d
g
e
t
T
y
p
e
1
)
;

3
6

c
o
n
t
e
x
t
.
L
o
a
d
O
p
t
i
o
n
s

=

l
o
a
d
O
p
t
i
o
n
s
;

3
7

3
8

i
n
t

p
a
g
e

=

1
;

3
9

4
0

d
o

4
1

{

4
2

q
u
e
r
y
R
e
c
o
r
d
e
r
.
R
e
s
e
t
(
)
;

4
3

4
4

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
"
)
;

4
5

i
n
t

t
o
t
a
l
C
o
u
n
t

=

c
o
n
t
e
x
t
.
G
a
d
g
e
t
s
.
C
o
u
n
t
(
)
;

4
6

i
n
t

o
f
f
s
e
t

=

P
E
R
_
P
A
G
E

*

(
p
a
g
e

-

1
)
;

4
7

/
/

G
e
t

a

l
i
s
t

o
f

g
a
d
g
e
t
s

f
r
o
m

t
h
e

D
B

4
8

I
E
n
u
m
e
r
a
b
l
e
<
G
a
d
g
e
t
>

g
a
d
g
e
t
s

=

c
o
n
t
e
x
t
.
G
a
d
g
e
t
s
.
S
k
i
p
(
o
f
f
s
e
t
)
.
T
a
k
e
(
P
E
R
_
P
A
G
E
)
;

4
9

f
o
r
e
a
c
h

(
G
a
d
g
e
t

g
a
d
g
e
t

i
n

g
a
d
g
e
t
s
)

5
0

{

5
1

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
{
0
}

b
y

{
1
}

(
{
2
}
)
"
,

g
a
d
g
e
t
.
N
a
m
e
,

g
a
d
g
e
t
.
M
a
n
u
f
a
c
t
u
r
e
r
1
.
N
a
m
e
,

g
a
d
g
e
t
.

G
a
d
g
e
t
T
y
p
e
1
.
G
a
d
g
e
t
T
y
p
e
N
a
m
e
)
;

5
2

}

5
3

5
4

/
/

C
h
e
c
k

i
f

t
h
e

u
s
e
r

w
a
n
t
s

t
o

v
i
e
w

t
h
e

q
u
e
r
i
e
s

p
e
r
f
o
r
m
e
d

5
5

C
o
n
s
o
l
e
.
W
r
i
t
e
(
"
Q
u
e
r
i
e
s

u
s
e
d
:

{
0
}
.

V
i
e
w

q
u
e
r
i
e
s
?

"
,

q
u
e
r
y
R
e
c
o
r
d
e
r
.
Q
u
e
r
i
e
s
.
C
o
u
n
t
)
;

5
6

c
h
a
r

k
e
y

=

C
o
n
s
o
l
e
.
R
e
a
d
K
e
y
(
)
.
K
e
y
C
h
a
r
;

5
7

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
)
;

5
8

i
f

(
k
e
y

=
=

'
y
'
)

5
9

{

6
0

O
u
t
p
u
t
Q
u
e
r
i
e
s
(
q
u
e
r
y
R
e
c
o
r
d
e
r
)
;

6
1

}

6
2

6
3

/
/

P
r
o
m
p
t

u
s
e
r

f
o
r

n
e
w

p
a
g
e

6
4

C
o
n
s
o
l
e
.
W
r
i
t
e
(
"
P
a
g
e

{
0
}

o
f

{
1
}
.

G
o

t
o

p
a
g
e
:

"
,

p
a
g
e
,

M
a
t
h
.
C
e
i
l
i
n
g
(
t
o
t
a
l
C
o
u
n
t

/

(
P
E
R
_
P
A
G
E

*

1
.
0
)
)
)
;

6
5

s
t
r
i
n
g

i
n
p
u
t

=

C
o
n
s
o
l
e
.
R
e
a
d
L
i
n
e
(
)
;

6
6

i
f

(
!
i
n
t
.
T
r
y
P
a
r
s
e
(
i
n
p
u
t
,

o
u
t

p
a
g
e
)
)

6
7

b
r
e
a
k
;

6
8

6
9

}

w
h
i
l
e

(
t
r
u
e
)
;

7
0

7
1

c
o
n
t
e
x
t
.
D
i
s
p
o
s
e
(
)
;

2
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
3
\
A
s
s
i
g
n
m
e
n
t
0
3
\
A
s
s
i
g
n
m
e
n
t
0
3
.
T
a
s
k
3
\
P
r
o
g
r
a
m
.
c
s

7
2

}

7
3

7
4

/
/
/

<
s
u
m
m
a
r
y
>

7
5

/
/
/

O
u
t
p
u
t

a

l
i
s
t

o
f

q
u
e
r
i
e
s

t
o

t
h
e

c
o
n
s
o
l
e

7
6

/
/
/

<
/
s
u
m
m
a
r
y
>

7
7

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
q
u
e
r
y
R
e
c
o
r
d
e
r
"
>
<
s
e
e

c
r
e
f
=
"
Q
u
e
r
y
R
e
c
o
r
d
e
r
"

/
>

u
s
e
d

t
o

r
e
c
o
r
d

t
h
e

q
u
e
r
i
e
s
<
/
p
a
r
a
m
>

7
8

s
t
a
t
i
c

v
o
i
d

O
u
t
p
u
t
Q
u
e
r
i
e
s
(
Q
u
e
r
y
R
e
c
o
r
d
e
r
.
Q
u
e
r
y
R
e
c
o
r
d
e
r

q
u
e
r
y
R
e
c
o
r
d
e
r
)

7
9

{

8
0

f
o
r
e
a
c
h

(
Q
u
e
r
y
I
n
f
o

i
n
f
o

i
n

q
u
e
r
y
R
e
c
o
r
d
e
r
.
Q
u
e
r
i
e
s
)

8
1

{

8
2

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
i
n
f
o
.
Q
u
e
r
y
)
;

8
3

i
f

(
i
n
f
o
.
P
a
r
a
m
s
.
C
o
u
n
t

>

0
)

8
4

{

8
5

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
P
a
r
a
m
e
t
e
r
s
:
"
)
;

8
6

f
o
r
e
a
c
h

(
K
e
y
V
a
l
u
e
P
a
i
r
<
s
t
r
i
n
g
,

o
b
j
e
c
t
>

k
v
p

i
n

i
n
f
o
.
P
a
r
a
m
s
)

8
7

{

8
8

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
{
0
}

=

{
1
}
"
,

k
v
p
.
K
e
y
,

k
v
p
.
V
a
l
u
e
)
;

8
9

}

9
0

}

9
1

9
2

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
-
-
-
-
-
-
-
-
-
"
)
;

9
3

}

9
4

}

9
5

}

9
6

}

9
7

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
A
s
s
i
g
n
m
e
n
t
0
3
.
T
a
s
k
3
\
Q
u
e
r
y
R
e
c
o
r
d
e
r
\
Q
u
e
r
y
R
e
c
o
r
d
e
r
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;

2
u
s
i
n
g

S
y
s
t
e
m
.
I
O
;

3
u
s
i
n
g

S
y
s
t
e
m
.
T
e
x
t
;

4
u
s
i
n
g

S
y
s
t
e
m
.
T
e
x
t
.
R
e
g
u
l
a
r
E
x
p
r
e
s
s
i
o
n
s
;

56
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
3
.
T
a
s
k
3
.
Q
u
e
r
y
R
e
c
o
r
d
e
r

7
{

8

/
/
/

<
s
u
m
m
a
r
y
>

9

/
/
/

R
e
c
o
r
d

a
l
l

t
h
e

q
u
e
r
i
e
s

p
e
r
f
o
r
m
e
d

b
y

a

L
I
N
Q

t
o

S
Q
L

d
a
t
a

c
o
n
t
e
x
t

1
0

/
/
/

<
/
s
u
m
m
a
r
y
>

1
1

/
/
/

<
a
u
t
h
o
r

e
m
a
i
l
=
"
d
a
n
i
e
l
@
d
a
n
.
c
x
"
>
D
a
n
i
e
l

L
o

N
i
g
r
o
<
/
a
u
t
h
o
r
>

1
2

p
u
b
l
i
c

c
l
a
s
s

Q
u
e
r
y
R
e
c
o
r
d
e
r

:

T
e
x
t
W
r
i
t
e
r

1
3

{

1
4

p
r
o
t
e
c
t
e
d

s
t
a
t
i
c

E
n
c
o
d
i
n
g

_
e
n
c
o
d
i
n
g
;

1
5

/
/
/

<
s
u
m
m
a
r
y
>

1
6

/
/
/

G
e
t
s

t
h
e

l
i
s
t

o
f

q
u
e
r
i
e
s

r
a
n

s
o

f
a
r
.

1
7

/
/
/

<
/
s
u
m
m
a
r
y
>

1
8

p
u
b
l
i
c

I
L
i
s
t
<
Q
u
e
r
y
I
n
f
o
>

Q
u
e
r
i
e
s

{

g
e
t
;

p
r
i
v
a
t
e

s
e
t
;

}

1
9

/
/
/

<
s
u
m
m
a
r
y
>

2
0

/
/
/

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

t
h
e

l
a
t
e
s
t

q
u
e
r
y

e
x
e
c
u
t
e
d

2
1

/
/
/

<
/
s
u
m
m
a
r
y
>

2
2

p
r
o
t
e
c
t
e
d

Q
u
e
r
y
I
n
f
o

_
l
a
t
e
s
t
Q
u
e
r
y
;

2
3

/
/
/

<
s
u
m
m
a
r
y
>

2
4

/
/
/

R
e
g
u
l
a
r

e
x
p
r
e
s
s
i
o
n

f
o
r

m
a
t
c
h
i
n
g

p
a
r
a
m
e
t
e
r
s

i
n

t
h
e

o
u
t
p
u
t

2
5

/
/
/

<
/
s
u
m
m
a
r
y
>

2
6

p
r
o
t
e
c
t
e
d

s
t
a
t
i
c

R
e
g
e
x

_
p
a
r
a
m
R
e
g
e
x

=

n
e
w

R
e
g
e
x
(
@
"
-
-

(
\
S
+
)
:
(
.
+
)

\
[
(
.
+
)
\
]
"
,

R
e
g
e
x
O
p
t
i
o
n
s
.
C
o
m
p
i
l
e
d
)
;

2
7

2
8

/
/
/

<
s
u
m
m
a
r
y
>

2
9

/
/
/

I
n
i
t
i
a
l
i
z
e
s

a

n
e
w

i
n
s
t
a
n
c
e

o
f

t
h
e

<
s
e
e

c
r
e
f
=
"
Q
u
e
r
y
R
e
c
o
r
d
e
r
"
/
>

c
l
a
s
s
.

3
0

/
/
/

<
/
s
u
m
m
a
r
y
>

3
1

p
u
b
l
i
c

Q
u
e
r
y
R
e
c
o
r
d
e
r
(
)

3
2

{

3
3

R
e
s
e
t
(
)
;

3
4

}

3
5

3
6

/
/
/

<
s
u
m
m
a
r
y
>

3
7

/
/
/

R
e
s
e
t

t
h
e

q
u
e
r
y

l
i
s
t
i
n
g

t
o

a

b
l
a
n
k

l
i
s
t

3
8

/
/
/

<
/
s
u
m
m
a
r
y
>

3
9

p
u
b
l
i
c

v
o
i
d

R
e
s
e
t
(
)

4
0

{

4
1

Q
u
e
r
i
e
s

=

n
e
w

L
i
s
t
<
Q
u
e
r
y
I
n
f
o
>
(
)
;

4
2

}

4
3

4
4

/
/
/

<
s
u
m
m
a
r
y
>

4
5

/
/
/

G
e
t

t
h
e

e
n
c
o
d
i
n
g

f
r
o
r

t
h
i
s

T
e
x
t
W
r
i
t
e
r
.

R
e
q
u
i
r
e
d

i
n

a
n
y

T
e
x
t
W
r
i
t
e
r

i
m
p
l
e
m
e
n
t
a
t
i
o
n

4
6

/
/
/

<
/
s
u
m
m
a
r
y
>

4
7

p
u
b
l
i
c

o
v
e
r
r
i
d
e

E
n
c
o
d
i
n
g

E
n
c
o
d
i
n
g

4
8

{

4
9

g
e
t

{

r
e
t
u
r
n

_
e
n
c
o
d
i
n
g

?
?

(
_
e
n
c
o
d
i
n
g

=

n
e
w

U
n
i
c
o
d
e
E
n
c
o
d
i
n
g
(
)
)
;

}

5
0

}

5
1

5
2

/
/
/

<
s
u
m
m
a
r
y
>

5
3

/
/
/

W
r
i
t
e

a

l
i
n
e

t
o

t
h
e

s
t
r
e
a
m
.

G
r
a
b

t
h
e

q
u
e
r
y

i
n
f
o
r
m
a
t
i
o
n

f
r
o
m

t
h
e

l
i
n
e

w
r
i
t
t
e
n
,

a
n
d

p
u
l
l

5
4

/
/
/

i
t

a
p
a
r
t
,

r
e
t
r
i
e
v
i
n
g

t
h
e

q
u
e
r
y

a
n
d

p
a
r
a
m
e
t
e
r
s

i
t

h
a
d

5
5

/
/
/

<
/
s
u
m
m
a
r
y
>

5
6

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
v
a
l
u
e
"
>
<
/
p
a
r
a
m
>

5
7

p
u
b
l
i
c

o
v
e
r
r
i
d
e

v
o
i
d

W
r
i
t
e
L
i
n
e
(
s
t
r
i
n
g

v
a
l
u
e
)

5
8

{

5
9

/
/

N
O
T
E
:

T
h
i
s

i
s

E
X
T
R
E
M
E
L
Y

i
m
p
l
e
m
e
n
t
a
t
i
o
n
-
s
p
e
c
i
f
i
c

6
0

/
/

I
g
n
o
r
e

s
h
o
r
t

l
i
n
e
s

(
l
i
k
e

l
i
n
e

b
r
e
a
k
s
)

6
1

i
f

(
v
a
l
u
e
.
L
e
n
g
t
h

<
=

6
)

r
e
t
u
r
n
;

6
2

6
3

s
t
r
i
n
g

f
i
r
s
t
F
o
u
r

=

v
a
l
u
e
.
S
u
b
s
t
r
i
n
g
(
0
,

4
)
;

6
4

/
/

S
k
i
p

t
h
e

r
a
n
d
o
m

i
n
f
o

a
t

t
h
e

b
o
t
t
o
m

o
f

t
h
e

o
u
t
p
u
t

6
5

i
f

(
f
i
r
s
t
F
o
u
r

=
=

"
-
-

C
"
)

6
6

r
e
t
u
r
n
;

6
7

6
8

/
/

I
s

i
t

a

p
a
r
a
m
e
t
e
r
?

6
9

i
f

(
f
i
r
s
t
F
o
u
r

=
=

"
-
-

@
"
)

7
0

{

7
1

M
a
t
c
h

m
a
t
c
h

=

_
p
a
r
a
m
R
e
g
e
x
.
M
a
t
c
h
(
v
a
l
u
e
)
;

7
2

/
/

P
a
r
a
m
e
t
e
r
s

a
l
w
a
y
s

c
o
m
e

a
f
t
e
r

q
u
e
r
i
e
s

s
o

w
e

c
a
n

a
s
s
o
c
i
a
t
e

t
h
i
s

7
3

/
/

p
a
r
a
m
e
t
e
r

w
i
t
h

t
h
e

l
a
t
e
s
t

q
u
e
r
y

7
4

_
l
a
t
e
s
t
Q
u
e
r
y
.
P
a
r
a
m
s
.
A
d
d
(
m
a
t
c
h
.
G
r
o
u
p
s
[
1
]
.
V
a
l
u
e
,

m
a
t
c
h
.
G
r
o
u
p
s
[
3
]
.
V
a
l
u
e
)
;

2
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
A
s
s
i
g
n
m
e
n
t
0
3
.
T
a
s
k
3
\
Q
u
e
r
y
R
e
c
o
r
d
e
r
\
Q
u
e
r
y
R
e
c
o
r
d
e
r
.
c
s

7
5

}

7
6

e
l
s
e

7
7

{

7
8

_
l
a
t
e
s
t
Q
u
e
r
y

=

n
e
w

Q
u
e
r
y
I
n
f
o

{

Q
u
e
r
y

=

v
a
l
u
e

}
;

7
9

Q
u
e
r
i
e
s
.
A
d
d
(
_
l
a
t
e
s
t
Q
u
e
r
y
)
;

8
0

}

8
1

}

8
2

}

8
3

}

8
4

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
A
s
s
i
g
n
m
e
n
t
0
3
.
T
a
s
k
3
\
Q
u
e
r
y
R
e
c
o
r
d
e
r
\
Q
u
e
r
y
I
n
f
o
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
.
C
o
l
l
e
c
t
i
o
n
s
.
G
e
n
e
r
i
c
;

23
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
3
.
T
a
s
k
3
.
Q
u
e
r
y
R
e
c
o
r
d
e
r

4
{

5

p
u
b
l
i
c

c
l
a
s
s

Q
u
e
r
y
I
n
f
o

6

{

7

p
u
b
l
i
c

s
t
r
i
n
g

Q
u
e
r
y

{

g
e
t
;

s
e
t
;

}

8

p
u
b
l
i
c

I
D
i
c
t
i
o
n
a
r
y
<
s
t
r
i
n
g
,

o
b
j
e
c
t
>

P
a
r
a
m
s

{

g
e
t
;

s
e
t
;

}

9

1
0

p
u
b
l
i
c

Q
u
e
r
y
I
n
f
o
(
)

1
1

{

1
2

P
a
r
a
m
s

=

n
e
w

D
i
c
t
i
o
n
a
r
y
<
s
t
r
i
n
g
,

o
b
j
e
c
t
>
(
)
;

1
3

}

1
4

}

1
5

}

1
6

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
A
s
s
i
g
n
m
e
n
t
s
\
4
\
A
s
s
i
g
n
m
e
n
t
0
4
.
T
a
s
k
1
.
C
l
i
e
n
t
\
P
r
o
g
r
a
m
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
M
e
s
s
a
g
i
n
g
;

34
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
4
.
T
a
s
k
1
.
C
l
i
e
n
t

5
{

6

c
l
a
s
s

P
r
o
g
r
a
m

7

{

8

p
r
o
t
e
c
t
e
d

c
o
n
s
t

s
t
r
i
n
g

M
E
S
S
A
G
E
Q
U
E
U
E
_
N
A
M
E

=

@
"
.
\
p
r
i
v
a
t
e
$
\
A
s
s
i
g
n
m
e
n
t
0
4
"
;

9

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)

1
0

{

1
1

/
/

C
r
e
a
t
e

t
h
e

q
u
e
u
e

i
f

i
t

d
o
e
s
n
'
t

a
l
r
e
a
d
y

e
x
i
s
t

1
2

i
f

(
!
M
e
s
s
a
g
e
Q
u
e
u
e
.
E
x
i
s
t
s
(
M
E
S
S
A
G
E
Q
U
E
U
E
_
N
A
M
E
)
)

1
3

M
e
s
s
a
g
e
Q
u
e
u
e
.
C
r
e
a
t
e
(
M
E
S
S
A
G
E
Q
U
E
U
E
_
N
A
M
E
)
;

1
4

1
5

M
e
s
s
a
g
e
Q
u
e
u
e

q
u
e
u
e

=

n
e
w

M
e
s
s
a
g
e
Q
u
e
u
e
(
M
E
S
S
A
G
E
Q
U
E
U
E
_
N
A
M
E
)
;

1
6

1
7

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
E
n
t
e
r

m
e
s
s
a
g
e
s
,

o
r

a

b
l
a
n
k

l
i
n
e

t
o

q
u
i
t
.
"
)
;

1
8

1
9

w
h
i
l
e

(
t
r
u
e
)

2
0

{

2
1

s
t
r
i
n
g

t
e
x
t

=

C
o
n
s
o
l
e
.
R
e
a
d
L
i
n
e
(
)
;

2
2

2
3

/
/

Q
u
i
t

t
h
e

l
o
o
p

i
f

t
h
e

u
s
e
r

e
n
t
e
r
e
d

n
o
t
h
i
n
g

2
4

i
f

(
t
e
x
t

=
=

s
t
r
i
n
g
.
E
m
p
t
y
)

2
5

b
r
e
a
k
;

2
6

2
7

/
/

C
r
e
a
t
e

a

n
e
w

m
e
s
s
a
g
e

w
i
t
h

t
h
e

s
p
e
c
i
f
i
e
d

t
e
x
t

2
8

q
u
e
u
e
.
S
e
n
d
(
t
e
x
t
)
;

2
9

}

3
0

}

3
1

}

3
2

}

3
3

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
A
s
s
i
g
n
m
e
n
t
s
\
4
\
A
s
s
i
g
n
m
e
n
t
0
4
.
T
a
s
k
1
.
S
e
r
v
e
r
\
S
e
r
v
i
c
e
1
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
I
O
;

3
u
s
i
n
g

S
y
s
t
e
m
.
M
e
s
s
a
g
i
n
g
;

4
u
s
i
n
g

S
y
s
t
e
m
.
S
e
r
v
i
c
e
P
r
o
c
e
s
s
;

5
u
s
i
n
g

S
y
s
t
e
m
.
T
h
r
e
a
d
i
n
g
;

67
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
4
.
T
a
s
k
1
.
S
e
r
v
e
r

8
{

9

p
u
b
l
i
c

p
a
r
t
i
a
l

c
l
a
s
s

S
e
r
v
i
c
e
1

:

S
e
r
v
i
c
e
B
a
s
e

1
0

{

1
1

p
r
o
t
e
c
t
e
d

c
o
n
s
t

s
t
r
i
n
g

M
E
S
S
A
G
E
Q
U
E
U
E
_
N
A
M
E

=

@
"
.
\
p
r
i
v
a
t
e
$
\
A
s
s
i
g
n
m
e
n
t
0
4
"
;

1
2

p
r
o
t
e
c
t
e
d

c
o
n
s
t

s
t
r
i
n
g

L
O
G
_
F
I
L
E

=

@
"
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

E
n
t
e
r
p
r
i
s
e

.

N
E
T
\
A
s
s
i
g
n
m
e
n
t
s
\
4
\
l
o
g
.
t
x
t
"
;

1
3

p
r
o
t
e
c
t
e
d

T
h
r
e
a
d

_
t
h
r
e
a
d
;

1
4

1
5

p
u
b
l
i
c

S
e
r
v
i
c
e
1
(
)

1
6

{

1
7

I
n
i
t
i
a
l
i
z
e
C
o
m
p
o
n
e
n
t
(
)
;

1
8

}

1
9

2
0

p
r
o
t
e
c
t
e
d

o
v
e
r
r
i
d
e

v
o
i
d

O
n
S
t
a
r
t
(
s
t
r
i
n
g
[
]

a
r
g
s
)

2
1

{

2
2

_
t
h
r
e
a
d

=

n
e
w

T
h
r
e
a
d
(
R
u
n
)
;

2
3

_
t
h
r
e
a
d
.
S
t
a
r
t
(
)
;

2
4

}

2
5

2
6

p
r
o
t
e
c
t
e
d

o
v
e
r
r
i
d
e

v
o
i
d

O
n
S
t
o
p
(
)

2
7

{

2
8

/
/

A
b
o
r
t
s

a
r
e

b
a
d
,

b
u
t

t
h
i
s

w
i
l
l

d
o

f
o
r

n
o
w
.

2
9

_
t
h
r
e
a
d
.
A
b
o
r
t
(
)
;

3
0

}

3
1

3
2

p
r
o
t
e
c
t
e
d

v
o
i
d

R
u
n
(
)

3
3

{

3
4

M
e
s
s
a
g
e
Q
u
e
u
e

q
u
e
u
e

=

n
e
w

M
e
s
s
a
g
e
Q
u
e
u
e
(
M
E
S
S
A
G
E
Q
U
E
U
E
_
N
A
M
E
)
;

3
5

/
/

O
p
e
n

t
h
e

l
o
g

f
i
l
e

w
i
t
h

s
h
a
r
e
d

r
e
a
d
/
w
r
i
t
e

s
o

o
t
h
e
r

p
r
o
c
e
s
s
e
s

c
a
n

s
t
i
l
l

r
e
a
d

i
t
.

3
6

F
i
l
e
S
t
r
e
a
m

l
o
g
F
i
l
e

=

n
e
w

F
i
l
e
S
t
r
e
a
m
(
L
O
G
_
F
I
L
E
,

F
i
l
e
M
o
d
e
.
A
p
p
e
n
d
,

F
i
l
e
A
c
c
e
s
s
.
W
r
i
t
e
,

F
i
l
e
S
h
a
r
e
.

R
e
a
d
W
r
i
t
e
)
;

3
7

S
t
r
e
a
m
W
r
i
t
e
r

l
o
g
W
r
i
t
e
r

=

n
e
w

S
t
r
e
a
m
W
r
i
t
e
r
(
l
o
g
F
i
l
e
)
;

3
8

3
9

w
h
i
l
e

(
t
r
u
e
)

4
0

{

4
1

M
e
s
s
a
g
e

m
e
s
s
a
g
e

=

q
u
e
u
e
.
R
e
c
e
i
v
e
(
)
;

4
2

m
e
s
s
a
g
e
.
F
o
r
m
a
t
t
e
r

=

n
e
w

X
m
l
M
e
s
s
a
g
e
F
o
r
m
a
t
t
e
r
(
n
e
w
[
]

{
t
y
p
e
o
f

(
s
t
r
i
n
g
)
}
)
;

4
3

l
o
g
W
r
i
t
e
r
.
W
r
i
t
e
L
i
n
e
(
"
{
1
}
:

R
e
c
e
i
v
e
d

'
{
0
}
'
"
,

m
e
s
s
a
g
e
.
B
o
d
y
,

D
a
t
e
T
i
m
e
.
N
o
w
)
;

4
4

l
o
g
W
r
i
t
e
r
.
F
l
u
s
h
(
)
;

4
5

}

4
6

}

4
7

}

4
8

}

4
9

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
A
s
s
i
g
n
m
e
n
t
s
\
4
\
A
s
s
i
g
n
m
e
n
t
0
4
.
T
a
s
k
2
\
T
e
s
t
C
o
m
C
l
a
s
s
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
.
E
n
t
e
r
p
r
i
s
e
S
e
r
v
i
c
e
s
;

2
u
s
i
n
g

S
y
s
t
e
m
.
M
e
s
s
a
g
i
n
g
;

34
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
4
.
T
a
s
k
2

5
{

6

p
u
b
l
i
c

c
l
a
s
s

T
e
s
t
C
o
m
C
l
a
s
s

:

S
e
r
v
i
c
e
d
C
o
m
p
o
n
e
n
t

7

{

8

p
r
o
t
e
c
t
e
d

c
o
n
s
t

s
t
r
i
n
g

M
E
S
S
A
G
E
Q
U
E
U
E
_
N
A
M
E

=

@
"
.
\
p
r
i
v
a
t
e
$
\
A
s
s
i
g
n
m
e
n
t
0
4
"
;

9

1
0

p
u
b
l
i
c

s
t
r
i
n
g

T
e
s
t
(
)

1
1

{

1
2

r
e
t
u
r
n

"
H
e
l
l
o

w
o
r
l
d
!
!
"
;

1
3

}

1
4

1
5

p
u
b
l
i
c

v
o
i
d

P
o
s
t
M
e
s
s
a
g
e
(
s
t
r
i
n
g

m
e
s
s
a
g
e
)

1
6

{

1
7

M
e
s
s
a
g
e
Q
u
e
u
e

q
u
e
u
e

=

n
e
w

M
e
s
s
a
g
e
Q
u
e
u
e
(
M
E
S
S
A
G
E
Q
U
E
U
E
_
N
A
M
E
)
;

1
8

q
u
e
u
e
.
S
e
n
d
(
"
V
i
a

C
O
M
:

"

+

m
e
s
s
a
g
e
)
;

1
9

}

2
0

}

2
1

}

2
2

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.

.
N
E
T
\
A
s
s
i
g
n
m
e
n
t
s
\
4
\
A
s
s
i
g
n
m
e
n
t
0
4
.
T
a
s
k
2
\
t
e
s
t
.
v
b
s

1
S
e
t

o
T
e
s
t

=

C
r
e
a
t
e
O
b
j
e
c
t
(
"
A
s
s
i
g
n
m
e
n
t
0
4
.
T
a
s
k
2
.
T
e
s
t
C
o
m
C
l
a
s
s
"
)

2
M
s
g
B
o
x

o
T
e
s
t
.
T
e
s
t
(
)

3
o
T
e
s
t
.
P
o
s
t
M
e
s
s
a
g
e
(
"
H
e
l
l
o

w
o
r
l
d

f
r
o
m

V
B
S
c
r
i
p
t
"
)

4

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
A
s
s
i
g
n
m
e
n
t
s
\
5
\
A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
1
\
H
e
l
l
o
W
o
r
l
d
.
a
s
m
x
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
.
W
e
b
.
S
e
r
v
i
c
e
s
;

23
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
1

4
{

5

[
W
e
b
S
e
r
v
i
c
e
(
N
a
m
e
s
p
a
c
e

=

"
h
t
t
p
:
/
/
d
a
n
.
c
x
/
U
n
i
/
E
n
t
e
r
p
r
i
s
e
.
N
E
T
/
A
s
s
i
g
n
m
e
n
t
0
5
/
T
a
s
k
1
"
)
]

6

[
W
e
b
S
e
r
v
i
c
e
B
i
n
d
i
n
g
(
C
o
n
f
o
r
m
s
T
o

=

W
s
i
P
r
o
f
i
l
e
s
.
B
a
s
i
c
P
r
o
f
i
l
e
1
_
1
)
]

7

[
S
y
s
t
e
m
.
C
o
m
p
o
n
e
n
t
M
o
d
e
l
.
T
o
o
l
b
o
x
I
t
e
m
(
f
a
l
s
e
)
]

8

/
/

T
o

a
l
l
o
w

t
h
i
s

W
e
b

S
e
r
v
i
c
e

t
o

b
e

c
a
l
l
e
d

f
r
o
m

s
c
r
i
p
t
,

u
s
i
n
g

A
S
P
.
N
E
T

A
J
A
X
,

u
n
c
o
m
m
e
n
t

t
h
e

f
o
l
l
o
w
i
n
g

l
i
n
e
.

9

/
/

[
S
y
s
t
e
m
.
W
e
b
.
S
c
r
i
p
t
.
S
e
r
v
i
c
e
s
.
S
c
r
i
p
t
S
e
r
v
i
c
e
]

1
0

p
u
b
l
i
c

c
l
a
s
s

H
e
l
l
o
W
o
r
l
d

:

W
e
b
S
e
r
v
i
c
e

1
1

{

1
2

[
W
e
b
M
e
t
h
o
d
]

1
3

p
u
b
l
i
c

s
t
r
i
n
g

H
e
l
l
o
(
)

1
4

{

1
5

r
e
t
u
r
n

"
H
e
l
l
o

W
o
r
l
d
"
;

1
6

}

1
7

1
8

[
W
e
b
M
e
t
h
o
d
]

1
9

p
u
b
l
i
c

i
n
t

B
l
a
h
(
)

2
0

{

2
1

r
e
t
u
r
n

4
2
;

2
2

}

2
3

}

2
4

}

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.

.
N
E
T
\
A
s
s
i
g
n
m
e
n
t
s
\
5
\
A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
2
\
P
r
o
g
r
a
m
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
X
m
l
.
L
i
n
q
;

3
u
s
i
n
g

A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
2
.
A
u
s
t
r
a
l
i
a
n
P
o
s
t
C
o
d
e
;

45
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
2

6
{

7

c
l
a
s
s

P
r
o
g
r
a
m

8

{

9

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)

1
0

{

1
1

A
u
s
t
r
a
l
i
a
n
P
o
s
t
C
o
d
e
S
o
a
p
C
l
i
e
n
t

c
l
i
e
n
t

=

n
e
w

A
u
s
t
r
a
l
i
a
n
P
o
s
t
C
o
d
e
S
o
a
p
C
l
i
e
n
t
(
)
;

1
2

s
t
r
i
n
g

r
e
s
u
l
t

=

c
l
i
e
n
t
.
G
e
t
A
u
s
t
r
a
l
i
a
n
P
o
s
t
C
o
d
e
B
y
L
o
c
a
t
i
o
n
(
"
T
h
o
r
n
b
u
r
y
"
)
;

1
3

/
/
C
o
n
s
o
l
e
.
W
r
i
t
e
(
r
e
s
u
l
t
)
;

1
4

1
5

/
*

T
h
i
s

A
u
s
t
r
a
l
i
a
n

P
o
s
t
c
o
d
e
s

s
e
r
v
i
c
e

i
s

v
e
r
y

w
e
i
r
d

-

I
t

r
e
t
u
r
n
s

X
M
L
!

W
e

n
e
e
d

t
o

p
a
r
s
e

1
6

*

t
h
e

X
M
L

i
n

o
r
d
e
r

t
o

a
c
t
u
a
l
l
y

u
s
e

i
t
.

I
t
'
d

b
e

b
e
t
t
e
r

t
o

r
e
t
u
r
n

n
o
r
m
a
l

o
b
j
e
c
t
s

i
n
s
t
e
a
d

1
7

*
/

1
8

X
E
l
e
m
e
n
t

x
m
l

=

X
E
l
e
m
e
n
t
.
P
a
r
s
e
(
r
e
s
u
l
t
)
;

1
9

f
o
r
e
a
c
h

(
X
E
l
e
m
e
n
t

r
o
w

i
n

x
m
l
.
E
l
e
m
e
n
t
s
(
"
T
a
b
l
e
"
)
)

2
0

{

2
1

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
{
0
}

-

{
1
}
"
,

r
o
w
.
E
l
e
m
e
n
t
(
"
P
o
s
t
C
o
d
e
"
)
.
V
a
l
u
e
,

r
o
w
.
E
l
e
m
e
n
t
(
"
L
o
c
a
t
i
o
n
"
)
.

V
a
l
u
e
)
;

2
2

}

2
3

2
4

C
o
n
s
o
l
e
.
R
e
a
d
K
e
y
(
)
;

2
5

}

2
6

}

2
7

}

2
8

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
A
s
s
i
g
n
m
e
n
t
s
\
5
\
A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
3
.
C
l
i
e
n
t
\
P
r
o
g
r
a
m
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
3
.
C
l
i
e
n
t
.
H
e
l
l
o
W
o
r
l
d
S
e
r
v
i
c
e
;

34
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
3
.
C
l
i
e
n
t

5
{

6

c
l
a
s
s

P
r
o
g
r
a
m

7

{

8

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)

9

{

1
0

H
e
l
l
o
W
o
r
l
d
S
e
r
v
i
c
e
C
l
i
e
n
t

c
l
i
e
n
t

=

n
e
w

H
e
l
l
o
W
o
r
l
d
S
e
r
v
i
c
e
C
l
i
e
n
t
(
)
;

1
1

v
a
r

r
e
s
u
l
t

=

c
l
i
e
n
t
.
H
e
l
l
o
W
o
r
l
d
(
)
;

1
2

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
r
e
s
u
l
t
.
M
e
s
s
a
g
e
)
;

1
3

C
o
n
s
o
l
e
.
R
e
a
d
K
e
y
(
)
;

1
4

}

1
5

}

1
6

}

1
7

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
5
\
A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
3
.
S
e
r
v
i
c
e
\
H
e
l
l
o
W
o
r
l
d
S
e
r
v
i
c
e
.
c
s

1
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
3
.
S
e
r
v
i
c
e

2
{

3

/
/
/

<
s
u
m
m
a
r
y
>

4

/
/
/

A
c
t
u
a
l

i
m
p
l
e
m
e
n
t
a
t
i
o
n

o
f

t
h
e

H
e
l
l
o

W
o
r
l
d

s
e
r
v
i
c
e

5

/
/
/

<
/
s
u
m
m
a
r
y
>

6

p
u
b
l
i
c

c
l
a
s
s

H
e
l
l
o
W
o
r
l
d
S
e
r
v
i
c
e

:

I
H
e
l
l
o
W
o
r
l
d
S
e
r
v
i
c
e

7

{

8

p
u
b
l
i
c

H
e
l
l
o
W
o
r
l
d
T
y
p
e

H
e
l
l
o
W
o
r
l
d
(
)

9

{

1
0

r
e
t
u
r
n

n
e
w

H
e
l
l
o
W
o
r
l
d
T
y
p
e

{

M
e
s
s
a
g
e

=

"
H
e
l
l
o

w
o
r
l
d
!
"

}
;

1
1

}

1
2

}

1
3

}

1
4

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
5
\
A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
3
.
S
e
r
v
i
c
e
\
I
H
e
l
l
o
W
o
r
l
d
S
e
r
v
i
c
e
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
.
R
u
n
t
i
m
e
.
S
e
r
i
a
l
i
z
a
t
i
o
n
;

2
u
s
i
n
g

S
y
s
t
e
m
.
S
e
r
v
i
c
e
M
o
d
e
l
;

34
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
3
.
S
e
r
v
i
c
e

5
{

6

/
/
/

<
s
u
m
m
a
r
y
>

7

/
/
/

S
e
r
v
i
c
e

c
o
n
t
r
a
c
t

f
o
r

t
h
e

H
e
l
l
o

W
o
r
l
d

s
e
r
v
i
c
e

8

/
/
/

<
/
s
u
m
m
a
r
y
>

9

[
S
e
r
v
i
c
e
C
o
n
t
r
a
c
t
]

1
0

p
u
b
l
i
c

i
n
t
e
r
f
a
c
e

I
H
e
l
l
o
W
o
r
l
d
S
e
r
v
i
c
e

1
1

{

1
2

[
O
p
e
r
a
t
i
o
n
C
o
n
t
r
a
c
t
]

1
3

H
e
l
l
o
W
o
r
l
d
T
y
p
e

H
e
l
l
o
W
o
r
l
d
(
)
;

1
4

}

1
5

1
6

/
/
/

<
s
u
m
m
a
r
y
>

1
7

/
/
/

S
i
m
p
l
e

d
a
t
a

c
o
n
t
r
a
c
t

1
8

/
/
/

<
/
s
u
m
m
a
r
y
>

1
9

[
D
a
t
a
C
o
n
t
r
a
c
t
]

2
0

p
u
b
l
i
c

c
l
a
s
s

H
e
l
l
o
W
o
r
l
d
T
y
p
e

2
1

{

2
2

[
D
a
t
a
M
e
m
b
e
r
]

2
3

p
u
b
l
i
c

s
t
r
i
n
g

M
e
s
s
a
g
e

{

g
e
t
;

s
e
t
;

}

2
4

}

2
5

}

2
6

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
5
\
A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
3
.
S
e
r
v
i
c
e
H
o
s
t
\
P
r
o
g
r
a
m
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
3
.
S
e
r
v
i
c
e
;

34
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
5
.
T
a
s
k
3
.
S
e
r
v
i
c
e
H
o
s
t

5
{

6

c
l
a
s
s

P
r
o
g
r
a
m

7

{

8

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)

9

{

1
0

S
y
s
t
e
m
.
S
e
r
v
i
c
e
M
o
d
e
l
.
S
e
r
v
i
c
e
H
o
s
t

h
o
s
t

=

n
e
w

S
y
s
t
e
m
.
S
e
r
v
i
c
e
M
o
d
e
l
.
S
e
r
v
i
c
e
H
o
s
t
(
t
y
p
e
o
f

(
H
e
l
l
o
W
o
r
l
d
S
e
r
v
i
c
e
)
)
;

1
1

h
o
s
t
.
O
p
e
n
(
)
;

1
2

1
3

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
S
e
r
v
i
c
e

r
u
n
n
i
n
g
!
"
)
;

1
4

1
5

C
o
n
s
o
l
e
.
R
e
a
d
L
i
n
e
(
)
;

1
6

h
o
s
t
.
C
l
o
s
e
(
)
;

1
7

}

1
8

}

1
9

}

2
0

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.

.
N
E
T
\
A
s
s
i
g
n
m
e
n
t
s
\
7
\
A
s
s
i
g
n
m
e
n
t
0
7
.
T
a
s
k
1
\
f
r
m
M
a
i
n
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
W
i
n
d
o
w
s
.
F
o
r
m
s
;

34
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
7
.
T
a
s
k
1

5
{

6

p
u
b
l
i
c

p
a
r
t
i
a
l

c
l
a
s
s

f
r
m
M
a
i
n

:

F
o
r
m

7

{

8

p
r
o
t
e
c
t
e
d

P
a
s
s
w
o
r
d
H
a
s
h
e
r

_
h
a
s
h
e
r

=

n
e
w

P
a
s
s
w
o
r
d
H
a
s
h
e
r
(
)
;

9

1
0

p
u
b
l
i
c

f
r
m
M
a
i
n
(
)

1
1

{

1
2

I
n
i
t
i
a
l
i
z
e
C
o
m
p
o
n
e
n
t
(
)
;

1
3

}

1
4

1
5

p
r
i
v
a
t
e

v
o
i
d

f
r
m
M
a
i
n
_
L
o
a
d
(
o
b
j
e
c
t

s
e
n
d
e
r
,

E
v
e
n
t
A
r
g
s

e
)

1
6

{

1
7

a
l
g
o
r
i
t
h
m
.
S
e
l
e
c
t
e
d
I
n
d
e
x

=

1
;

1
8

}

1
9

2
0

p
r
i
v
a
t
e

v
o
i
d

g
e
n
e
r
a
t
e
S
a
l
t
_
C
l
i
c
k
(
o
b
j
e
c
t

s
e
n
d
e
r
,

E
v
e
n
t
A
r
g
s

e
)

2
1

{

2
2

s
a
l
t
.
T
e
x
t

=

_
h
a
s
h
e
r
.
G
e
n
e
r
a
t
e
S
a
l
t
(
)
;

2
3

}

2
4

2
5

p
r
i
v
a
t
e

v
o
i
d

e
n
c
r
y
p
t
_
C
l
i
c
k
(
o
b
j
e
c
t

s
e
n
d
e
r
,

E
v
e
n
t
A
r
g
s

e
)

2
6

{

2
7

r
e
s
u
l
t
.
T
e
x
t

=

_
h
a
s
h
e
r
.
C
o
m
p
u
t
e
H
a
s
h
(
p
a
s
s
w
o
r
d
.
T
e
x
t
,

s
a
l
t
.
T
e
x
t
)
;

2
8

}

2
9

3
0

p
r
i
v
a
t
e

v
o
i
d

a
l
g
o
r
i
t
h
m
_
S
e
l
e
c
t
e
d
I
n
d
e
x
C
h
a
n
g
e
d
(
o
b
j
e
c
t

s
e
n
d
e
r
,

E
v
e
n
t
A
r
g
s

e
)

3
1

{

3
2

_
h
a
s
h
e
r
.
H
a
s
h
A
l
g
o
r
i
t
h
m

=

_
h
a
s
h
e
r
.
H
a
s
h
A
l
g
o
r
i
t
h
m
F
a
c
t
o
r
y
(
(
s
t
r
i
n
g
)
a
l
g
o
r
i
t
h
m
.
S
e
l
e
c
t
e
d
I
t
e
m
)
;

3
3

}

3
4

}

3
5

}

3
6

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
A
s
s
i
g
n
m
e
n
t
s
\
7
\
A
s
s
i
g
n
m
e
n
t
0
7
.
T
a
s
k
1
\
P
a
s
s
w
o
r
d
H
a
s
h
e
r
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
S
e
c
u
r
i
t
y
.
C
r
y
p
t
o
g
r
a
p
h
y
;

3
u
s
i
n
g

S
y
s
t
e
m
.
T
e
x
t
;

45
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
7
.
T
a
s
k
1

6
{

7

p
u
b
l
i
c

c
l
a
s
s

P
a
s
s
w
o
r
d
H
a
s
h
e
r

8

{

9

/
/
/

<
s
u
m
m
a
r
y
>

1
0

/
/
/

H
o
w

m
a
n
y

b
y
t
e
s

t
o

u
s
e

i
n

g
e
n
e
r
a
t
e
d

s
a
l
t
s

1
1

/
/
/

<
/
s
u
m
m
a
r
y
>

1
2

p
r
o
t
e
c
t
e
d

i
n
t

S
A
L
T
_
B
Y
T
E
_
L
E
N
G
T
H

=

4
;

1
3

1
4

/
/
/

<
s
u
m
m
a
r
y
>

1
5

/
/
/

G
e
t
s

o
r

s
e
t
s

t
h
e

h
a
s
h

a
l
g
o
r
i
t
h
m
.

1
6

/
/
/

<
/
s
u
m
m
a
r
y
>

1
7

/
/
/

<
v
a
l
u
e
>

1
8

/
/
/

T
h
e

h
a
s
h

a
l
g
o
r
i
t
h
m
.

1
9

/
/
/

<
/
v
a
l
u
e
>

2
0

p
u
b
l
i
c

H
a
s
h
A
l
g
o
r
i
t
h
m

H
a
s
h
A
l
g
o
r
i
t
h
m

{

g
e
t
;

s
e
t
;

}

2
1

2
2

/
/
/

<
s
u
m
m
a
r
y
>

2
3

/
/
/

G
e
n
e
r
a
t
e
s

a

r
a
n
d
o
m

s
a
l
t

v
a
l
u
e

2
4

/
/
/

<
/
s
u
m
m
a
r
y
>

2
5

/
/
/

<
r
e
t
u
r
n
s
>
R
a
n
d
o
m

s
a
l
t

v
a
l
u
e
<
/
r
e
t
u
r
n
s
>

2
6

p
u
b
l
i
c

s
t
r
i
n
g

G
e
n
e
r
a
t
e
S
a
l
t
(
)

2
7

{

2
8

b
y
t
e
[
]

s
a
l
t
B
y
t
e
s

=

n
e
w

b
y
t
e
[
S
A
L
T
_
B
Y
T
E
_
L
E
N
G
T
H
]
;

2
9

/
/

U
s
e

s
e
c
u
r
e

r
a
n
d
o
m

n
u
m
b
e
r

g
e
n
e
r
a
t
o
r

3
0

R
N
G
C
r
y
p
t
o
S
e
r
v
i
c
e
P
r
o
v
i
d
e
r

r
a
n
d
o
m

=

n
e
w

R
N
G
C
r
y
p
t
o
S
e
r
v
i
c
e
P
r
o
v
i
d
e
r
(
)
;

3
1

r
a
n
d
o
m
.
G
e
t
N
o
n
Z
e
r
o
B
y
t
e
s
(
s
a
l
t
B
y
t
e
s
)
;

3
2

r
e
t
u
r
n

C
o
n
v
e
r
t
.
T
o
B
a
s
e
6
4
S
t
r
i
n
g
(
s
a
l
t
B
y
t
e
s
)
;

3
3

}

3
4

3
5

/
/
/

<
s
u
m
m
a
r
y
>

3
6

/
/
/

C
o
m
p
u
t
e
s

t
h
e

h
a
s
h

f
o
r

a

p
a
s
s
w
o
r
d
,

u
s
i
n
g

a

p
a
r
t
i
c
u
l
a
r

s
a
l
t

3
7

/
/
/

<
/
s
u
m
m
a
r
y
>

3
8

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
p
a
s
s
w
o
r
d
"
>
T
h
e

p
a
s
s
w
o
r
d
.
<
/
p
a
r
a
m
>

3
9

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
s
a
l
t
"
>
T
h
e

s
a
l
t
.
<
/
p
a
r
a
m
>

4
0

/
/
/

<
r
e
t
u
r
n
s
>
H
a
s
h

o
f

t
h
e

p
a
s
s
w
o
r
d
<
/
r
e
t
u
r
n
s
>

4
1

p
u
b
l
i
c

s
t
r
i
n
g

C
o
m
p
u
t
e
H
a
s
h
(
s
t
r
i
n
g

p
a
s
s
w
o
r
d
,

s
t
r
i
n
g

s
a
l
t
)

4
2

{

4
3

s
t
r
i
n
g

s
a
l
t
e
d
P
a
s
s
w
o
r
d

=

A
d
d
S
a
l
t
T
o
P
a
s
s
w
o
r
d
(
p
a
s
s
w
o
r
d
,

s
a
l
t
)
;

4
4

b
y
t
e
[
]

i
n
p
u
t
B
y
t
e
s

=

E
n
c
o
d
i
n
g
.
A
S
C
I
I
.
G
e
t
B
y
t
e
s
(
s
a
l
t
e
d
P
a
s
s
w
o
r
d
)
;

4
5

b
y
t
e
[
]

h
a
s
h

=

H
a
s
h
A
l
g
o
r
i
t
h
m
.
C
o
m
p
u
t
e
H
a
s
h
(
i
n
p
u
t
B
y
t
e
s
)
;

4
6

r
e
t
u
r
n

C
o
n
v
e
r
t
.
T
o
B
a
s
e
6
4
S
t
r
i
n
g
(
h
a
s
h
)
;

4
7

}

4
8

4
9

/
/
/

<
s
u
m
m
a
r
y
>

5
0

/
/
/

A
d
d

t
h
e

s
a
l
t

t
o

t
h
e

p
a
s
s
w
o
r
d
.

S
e
p
a
r
a
t
e

m
e
t
h
o
d

s
o

i
m
p
l
e
m
e
n
t
a
t
i
o
n

c
a
n

b
e

e
a
s
i
l
y

c
h
a
n
g
e
d
.

5
1

/
/
/

V
i
r
t
u
a
l

s
o

i
t

c
a
n

b
e

o
v
e
r
r
i
d
d
e
n

b
y

c
h
i
l
d

c
l
a
s
s
e
s
.

5
2

/
/
/

<
/
s
u
m
m
a
r
y
>

5
3

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
p
a
s
s
w
o
r
d
"
>
T
h
e

p
a
s
s
w
o
r
d
<
/
p
a
r
a
m
>

5
4

/
/
/

<
p
a
r
a
m

n
a
m
e
=
"
s
a
l
t
"
>
T
h
e

s
a
l
t
<
/
p
a
r
a
m
>

5
5

/
/
/

<
r
e
t
u
r
n
s
>
S
a
l
t
e
d

p
a
s
s
w
o
r
d
<
/
r
e
t
u
r
n
s
>

5
6

p
r
o
t
e
c
t
e
d

v
i
r
t
u
a
l

s
t
r
i
n
g

A
d
d
S
a
l
t
T
o
P
a
s
s
w
o
r
d
(
s
t
r
i
n
g

p
a
s
s
w
o
r
d
,

s
t
r
i
n
g

s
a
l
t
)

5
7

{

5
8

r
e
t
u
r
n

p
a
s
s
w
o
r
d

+

s
a
l
t
;

5
9

}

6
0

6
1

p
u
b
l
i
c

H
a
s
h
A
l
g
o
r
i
t
h
m

H
a
s
h
A
l
g
o
r
i
t
h
m
F
a
c
t
o
r
y
(
s
t
r
i
n
g

a
l
g
o
r
i
t
h
m
N
a
m
e
)

6
2

{

6
3

/
/
r
e
t
u
r
n

(
H
a
s
h
A
l
g
o
r
i
t
h
m
)

A
c
t
i
v
a
t
o
r
.
C
r
e
a
t
e
I
n
s
t
a
n
c
e
(
T
y
p
e
.
G
e
t
T
y
p
e
(
"
S
y
s
t
e
m
.
S
e
c
u
r
i
t
y
.
C
r
y
p
t
o
g
r
a
p
h
y
.

"

+

a
l
g
o
r
i
t
h
m
N
a
m
e

+

"
M
a
n
a
g
e
d
"
)
)
;

6
4

s
w
i
t
c
h

(
a
l
g
o
r
i
t
h
m
N
a
m
e
.
T
o
U
p
p
e
r
(
)
)

6
5

{

6
6

c
a
s
e

"
S
H
A
1
"
:

r
e
t
u
r
n

n
e
w

S
H
A
1
M
a
n
a
g
e
d
(
)
;

6
7

c
a
s
e

"
S
H
A
2
5
6
"
:

r
e
t
u
r
n

n
e
w

S
H
A
2
5
6
M
a
n
a
g
e
d
(
)
;

6
8

c
a
s
e

"
S
H
A
3
8
4
"
:

r
e
t
u
r
n

n
e
w

S
H
A
3
8
4
M
a
n
a
g
e
d
(
)
;

6
9

c
a
s
e

"
S
H
A
5
1
2
"
:

r
e
t
u
r
n

n
e
w

S
H
A
5
1
2
M
a
n
a
g
e
d
(
)
;

7
0

c
a
s
e

"
M
D
5
"
:

r
e
t
u
r
n

n
e
w

M
D
5
C
r
y
p
t
o
S
e
r
v
i
c
e
P
r
o
v
i
d
e
r
(
)
;

7
1

d
e
f
a
u
l
t
:

7
2

t
h
r
o
w

n
e
w

A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
(
"
I
n
v
a
l
i
d

h
a
s
h

a
l
g
o
r
i
t
h
m

s
p
e
c
i
f
i
e
d
"
,

"
a
l
g
o
r
i
t
h
m
N
a
m
e
"
)
;

7
3

}

2
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
A
s
s
i
g
n
m
e
n
t
s
\
7
\
A
s
s
i
g
n
m
e
n
t
0
7
.
T
a
s
k
1
\
P
a
s
s
w
o
r
d
H
a
s
h
e
r
.
c
s

7
4

}

7
5

}

7
6

}

7
7

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.

.
N
E
T
\
A
s
s
i
g
n
m
e
n
t
s
\
7
\
A
s
s
i
g
n
m
e
n
t
0
7
.
T
a
s
k
2
\
P
r
o
g
r
a
m
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
S
e
c
u
r
i
t
y
;

3
u
s
i
n
g

S
y
s
t
e
m
.
S
e
c
u
r
i
t
y
.
P
e
r
m
i
s
s
i
o
n
s
;

4
u
s
i
n
g

S
y
s
t
e
m
.
S
e
c
u
r
i
t
y
.
P
r
i
n
c
i
p
a
l
;

56
n
a
m
e
s
p
a
c
e

A
s
s
i
g
n
m
e
n
t
0
7
.
T
a
s
k
2

7
{

8

c
l
a
s
s

P
r
o
g
r
a
m

9

{

1
0

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)

1
1

{

1
2

A
p
p
D
o
m
a
i
n
.
C
u
r
r
e
n
t
D
o
m
a
i
n
.
S
e
t
P
r
i
n
c
i
p
a
l
P
o
l
i
c
y
(
P
r
i
n
c
i
p
a
l
P
o
l
i
c
y
.
W
i
n
d
o
w
s
P
r
i
n
c
i
p
a
l
)
;

1
3

t
r
y

1
4

{

1
5

A
w
e
s
o
m
e
F
u
n
c
t
i
o
n
(
)
;

1
6

}

1
7

c
a
t
c
h

(
S
e
c
u
r
i
t
y
E
x
c
e
p
t
i
o
n

e
x
)

1
8

{

1
9

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
S
o
r
r
y
,

y
o
u
'
r
e

n
o
t

a
w
e
s
o
m
e
:

{
0
}
"
,

e
x
.
M
e
s
s
a
g
e
)
;

2
0

}

2
1

2
2

C
o
n
s
o
l
e
.
R
e
a
d
K
e
y
(
)
;

2
3

}

2
4

2
5

/
/
/

<
s
u
m
m
a
r
y
>

2
6

/
/
/

O
n
l
y

a
w
e
s
o
m
e

u
s
e
r
s

c
a
n

e
x
e
c
u
t
e

t
h
i
s

m
e
t
h
o
d

(
n
e
e
d

t
o

b
e

i
n

"
A
w
e
s
o
m
e
U
s
e
r
s
"

w
i
n
d
o
w
s

g
r
o
u
p
)

2
7

/
/
/

<
/
s
u
m
m
a
r
y
>

2
8

[
P
r
i
n
c
i
p
a
l
P
e
r
m
i
s
s
i
o
n
(
S
e
c
u
r
i
t
y
A
c
t
i
o
n
.
D
e
m
a
n
d
,

R
o
l
e
=
"
A
w
e
s
o
m
e
U
s
e
r
s
"
)
]

2
9

s
t
a
t
i
c

v
o
i
d

A
w
e
s
o
m
e
F
u
n
c
t
i
o
n
(
)

3
0

{

3
1

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
Y
o
u

h
a
v
e

p
e
r
m
i
s
s
i
o
n

t
o

b
e

a
w
e
s
o
m
e
.
"
)
;

3
2

}

3
3

}

3
4

}

3
5

Spikes

HIT3099/HIT8099 Enterprise .NET Spike Outcome Report - Transaction Scripts

1

Faculty of Information and Communication Technologies

Enterprise .NET

Spike Outcome Report

By Lakthinda Ranasinghe / Daniel Lo Niegro

Transaction Scripts

The name "Transaction Scripts" was new to us. But after researching about it, We realised that it is not

entirely an alien concept, and it seems that we have already used that concept in our regular developments

without knowing, that we are using a well recognised design pattern.

So, what is "Transaction Scripts"? It is a design pattern used to implement a business logic as a procedure,

with one or more transactions with a database and, transactions involve with steps of validation and

calculation of data. Transaction Scripts pattern can be modularised, and used in any layer, depend on the

complexity of the business logic. It works as an independent procedure, hence, changes to the logic would

not affect the other business logics in a program. It is recognised as best suitable for implementing simple

logic and small applications.

Implementation

Business Logic - Meeting Room Booking System

We initiated the project by identifying different business logics where we can apply Transaction Scripts in

the design. We decided to feature following features of the booking system.

1. Meeting room booking

 Related business rules:

 a. A room can only be booked by 1 person at a time.

 b. A meeting record must have a booking owner, a reason for the meeting, time/date and duration.

 c. When a meeting is booked, it should check for conflicts and notify user.

In Meeting room booking, we first check existing booking records for any conflicts, and if there is any, the

user will be notified and would not make the booking. If there are no conflicts, create a booking record in

"meeting room table".

2. Remove a booking

 Related business rules:

 a. A meeting can only be cancelled, by the person who booked it.

In Remove a booking, first check whether the user is the owner of the booking, and if not notify the user.

secondly, if the user is the owner of the booking, then remove the record from meeting room table.

HIT3099/HIT8099 Enterprise .NET Spike Outcome Report - Transaction Scripts

2

Data Access Layer (DAL)

In
s
e
rt
R
e
c
o
rd
(r
o
o
m
ID
,u
s
e
rI
D
,s
ta
rt
D
a
te
,

e
n
d
D
a
te
)

is
R
e
c
o
rd
A
d
d
e
d
:b
o
o
le
a
n deleteB

ooking(bookingID
,userID

)

isD
eleted:boolean

Presentation Layer

Make Booking Remove Booking

Business Logic Layer

ch
ec
kR
oo
m
A
va
ila
bi
lit
y(
ro
om

ID
,s
ta
rt
D
at
e,
E
nd
D
at
e)

is
A
va
ila
bl
e:
bo
ol
ea
n

g
e
tB
o
o
k
in
g
O
w
n
e
rs
(u
s
e
rI
D
)

is
O
w
n
e
r:
b
o
o
le
a
n

DB

1 2 1 2

Development

Step 1. Create the database. Either import an SQL DDL file, or follow following steps to create a new

database:

1. Open Visual Studio

2. Right-click “Data Connections”

3. Click “Create New SQL Server Database”

4. Enter .\SQLEXPRESS as the server name, and choose a database name. Click OK

5. Create database according to required structure.

Step 2. Create four projects in Visual Studio. These are:

● DataAccess

● BusinessLayer

● Common

● UserInterface

HIT3099/HIT8099 Enterprise .NET Spike Outcome Report - Transaction Scripts

3

Step 3: Create the DataSet in Common project

Common will contain things that are common to multiple layers.

1. Right-click “Common” project and select Add -> New Item

2. Select “DataSet”, type an appropriate name and click OK. The DataSet designer should open

3. In Data Connections pane on the left of Visual Studio, expand your database -> Tables

4. Drag all the tables onto the DataSet designer

5. Add appropriate TableAdapter methods by right-clicking the TableAdapters and clicking “Add

Query” This includes things like simple SELECT statements (eg. GetRoomByID - SELECT *

FROM Room WHERE ID = @id) as well as more advanced SELECT statements using joins (eg.

GetMeetingsByRoomIdAndDate:

SELECT m.*

FROM Meeting m

INNER JOIN Room r ON m.RoomID = r.id

WHERE r.ID = @roomId AND m.StartDate <= @startDate OR m.EndDate >= @endDate

Step 4: Create data access layer. Create classes for each database entity (corresponding to the entities in

the DataSet) for CRUD operations, as well as any other TableAdapter methods you’ve created. Create

interfaces first (in the Common project), and then create classes that implement these interfaces (in the

DataAccess project)

Step 5: Create business logic layer.

This is where we use the transaction scripts. As explained above, we will implement the above defined

transactions as follows:

a) Make Booking

public bool MakeBooking(int roomId, int userId, DateTime startDate, DateTime endDate, string

reason)
{

 // Business rule: Clashes (multiple meetings at same time) are not allowed

 if (CheckRoomAvailability(roomId, startDate, endDate))
 throw new Exception("Room is already booked at this time!");

 // Business rule: Add booking record with userID,startDate,endDate,reason

 return _meetingData.Insert(roomId, userId, startDate, endDate, reason);

}

public bool CheckRoomAvailability(int roomId, DateTime startDate, DateTime endDate)

 {
 // Check if any meetings already exist

 RoomBooking.MeetingDataTable dataTable =

 _meetingData.GetMeetingsByRoomIdAndDates(roomId, startDate, endDate);

 return (dataTable.Count > 0);

}

HIT3099/HIT8099 Enterprise .NET Spike Outcome Report - Transaction Scripts

4

b) Delete Booking

public void CancelMeeting(int meetingId, int userId)

{
 RoomBooking.MeetingRow meeting = _meetingData.GetMeeting(meetingId);

 // Business rule: Meetings can only be cancelled by the user that created them

 if (meeting.OwnerUserID != userId)
 throw new Exception("Meetings can only be cancelled by the user that created them");

 // Business rule: Delete the booking
 _meetingData.Delete(meetingId);

}

Step 6: Set up Castle Windsor in the UI project. This involves adding a reference to Castle Windsor, and

creating the App.config file. Refer to Dependency Injection / Inversion of Control spike for more details.

Summary

We implemented a Meeting room booking system using Transaction Scripts with two functions, Adding a

booking and a deleting a booking. We use the modularised approach to implement above program, where we

use Interfaces to access the business logic layer and the data access layer, allowing us to have flexibility over

business logic implementation without affecting other layers.

Outstanding Issues
● What is the best way to apply Transaction Script?

Technology Requirements
● Visual Studio 2010

● .NET Framework 3.5

Links/Resources
● Google - http://google.com/

● Notes from Database Programming lectures (Swinburne University)

● Patterns of Enterprise Application Architecture (Martin Fowler), ISBN 0321127420

● http://kostas.homeip.net/reading/Software%20Development/Design%20Patterns/Patterns%20of%20

Enterprise%20Application%20Architecture/transactionScript.html

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
N
E
T
\
S
p
i
k
e
s
\
S
p
i
k
e
8
\
S
p
i
k
e
8
.
B
u
s
i
n
e
s
s
L
o
g
i
c
\
M
e
e
t
i
n
g
B
L
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
p
i
k
e
8
.
B
u
s
i
n
e
s
s
L
o
g
i
c
.
A
b
s
t
r
a
c
t
;

3
u
s
i
n
g

S
p
i
k
e
8
.
C
o
m
m
o
n
;

4
u
s
i
n
g

S
p
i
k
e
8
.
D
a
t
a
A
c
c
e
s
s
.
A
b
s
t
r
a
c
t
;

56
n
a
m
e
s
p
a
c
e

S
p
i
k
e
8
.
B
u
s
i
n
e
s
s
L
o
g
i
c

7
{

8

p
u
b
l
i
c

c
l
a
s
s

M
e
e
t
i
n
g
B
L

:

I
M
e
e
t
i
n
g
B
L

9

{

1
0

p
r
o
t
e
c
t
e
d

r
e
a
d
o
n
l
y

I
R
o
o
m
D
a
t
a

_
r
o
o
m
D
a
t
a
;

1
1

p
r
o
t
e
c
t
e
d

r
e
a
d
o
n
l
y

I
M
e
e
t
i
n
g
D
a
t
a

_
m
e
e
t
i
n
g
D
a
t
a
;

1
2

1
3

p
u
b
l
i
c

M
e
e
t
i
n
g
B
L
(
I
R
o
o
m
D
a
t
a

r
o
o
m
D
a
t
a
,

I
M
e
e
t
i
n
g
D
a
t
a

m
e
e
t
i
n
g
D
a
t
a
)

1
4

{

1
5

_
r
o
o
m
D
a
t
a

=

r
o
o
m
D
a
t
a
;

1
6

_
m
e
e
t
i
n
g
D
a
t
a

=

m
e
e
t
i
n
g
D
a
t
a
;

1
7

}

1
8

1
9

p
u
b
l
i
c

b
o
o
l

M
a
k
e
B
o
o
k
i
n
g
(
i
n
t

r
o
o
m
I
d
,

i
n
t

u
s
e
r
I
d
,

D
a
t
e
T
i
m
e

s
t
a
r
t
D
a
t
e
,

D
a
t
e
T
i
m
e

e
n
d
D
a
t
e
,

s
t
r
i
n
g

r
e
a
s
o
n
)

2
0

{

2
1

/
/

B
u
s
i
n
e
s
s

r
u
l
e
:

C
l
a
s
h
e
s

(
m
u
l
t
i
p
l
e

m
e
e
t
i
n
g
s

a
t

s
a
m
e

t
i
m
e
)

a
r
e

n
o
t

a
l
l
o
w
e
d

2
2

i
f

(
!
C
h
e
c
k
R
o
o
m
A
v
a
i
l
a
b
i
l
i
t
y
(
r
o
o
m
I
d
,

s
t
a
r
t
D
a
t
e
,

e
n
d
D
a
t
e
)
)

2
3

t
h
r
o
w

n
e
w

E
x
c
e
p
t
i
o
n
(
"
R
o
o
m

i
s

a
l
r
e
a
d
y

b
o
o
k
e
d

a
t

t
h
i
s

t
i
m
e
!
"
)
;

2
4

2
5

r
e
t
u
r
n

_
m
e
e
t
i
n
g
D
a
t
a
.
I
n
s
e
r
t
(
r
o
o
m
I
d
,

u
s
e
r
I
d
,

s
t
a
r
t
D
a
t
e
,

e
n
d
D
a
t
e
,

r
e
a
s
o
n
)
;

2
6

}

2
7

2
8

p
u
b
l
i
c

b
o
o
l

C
h
e
c
k
R
o
o
m
A
v
a
i
l
a
b
i
l
i
t
y
(
i
n
t

r
o
o
m
I
d
,

D
a
t
e
T
i
m
e

s
t
a
r
t
D
a
t
e
,

D
a
t
e
T
i
m
e

e
n
d
D
a
t
e
)

2
9

{

3
0

/
/

C
h
e
c
k

i
f

a
n
y

m
e
e
t
i
n
g
s

a
l
r
e
a
d
y

e
x
i
s
t

3
1

R
o
o
m
B
o
o
k
i
n
g
.
M
e
e
t
i
n
g
D
a
t
a
T
a
b
l
e

d
a
t
a
T
a
b
l
e

=

_
m
e
e
t
i
n
g
D
a
t
a
.
G
e
t
M
e
e
t
i
n
g
s
B
y
R
o
o
m
I
d
A
n
d
D
a
t
e
s
(
r
o
o
m
I
d
,

s
t
a
r
t
D
a
t
e
,

e
n
d
D
a
t
e
)
;

3
2

r
e
t
u
r
n

d
a
t
a
T
a
b
l
e
.
C
o
u
n
t

!
=

0
;

3
3

}

3
4

3
5

p
u
b
l
i
c

v
o
i
d

C
a
n
c
e
l
M
e
e
t
i
n
g
(
i
n
t

m
e
e
t
i
n
g
I
d
,

i
n
t

u
s
e
r
I
d
)

3
6

{

3
7

R
o
o
m
B
o
o
k
i
n
g
.
M
e
e
t
i
n
g
R
o
w

m
e
e
t
i
n
g

=

_
m
e
e
t
i
n
g
D
a
t
a
.
G
e
t
M
e
e
t
i
n
g
(
m
e
e
t
i
n
g
I
d
)
;

3
8

/
/

B
u
s
i
n
e
s
s

r
u
l
e
:

M
e
e
t
i
n
g
s

c
a
n

o
n
l
y

b
e

c
a
n
c
e
l
l
e
d

b
y

t
h
e

u
s
e
r

t
h
a
t

c
r
e
a
t
e
d

t
h
e
m

3
9

i
f

(
m
e
e
t
i
n
g
.
O
w
n
e
r
U
s
e
r
I
D

!
=

u
s
e
r
I
d
)

4
0

t
h
r
o
w

n
e
w

E
x
c
e
p
t
i
o
n
(
"
M
e
e
t
i
n
g
s

c
a
n

o
n
l
y

b
e

c
a
n
c
e
l
l
e
d

b
y

t
h
e

u
s
e
r

t
h
a
t

c
r
e
a
t
e
d

t
h
e
m
"
)
;

4
1

4
2

_
m
e
e
t
i
n
g
D
a
t
a
.
D
e
l
e
t
e
(
m
e
e
t
i
n
g
I
d
)
;

4
3

}

4
4

}

4
5

}

4
6

Faculty of Information and Communication Technologies

Enterprise .NET

Spike Outcome Report

Willson Santoso

Daniel Lo Nigro

Darren Pratt

Distributed Transactions with

Windows Communication Foundation Services

1. BACKGROUND

What are transactions?

A transaction is any modification to any record in a database table. When you insert, update, or

delete a record, it is called a transaction. On the other hand, when you select a record to read, it is

not a transaction, because nothing changes in the database.

Some business rules require that a group of modifications be treated as a single transaction. For

example, in accounting software, a debit and a credit must succeed or fail together because the

accounts must "balance." If a debit succeeds and the credit fails, the accounts will not balance. This

kind of balanced modification collectively represents a single transaction. If an error occurs in the

transaction, the entire transaction must be rolled back.

A transaction is initiated from a single program. This type of program executes a command to begin

and commit (complete) a transaction. Between these two commands, the program can modify any

quantity of records within the database. This kind of multiple-step modification represents a single

transaction.

What are Distributed Transactions?

A distributed transaction involves more than one database. A single distributed transaction may

involve a company's inventory, customer relations management, and accounts receivable databases.

For example, when an order is received on a Web site, the program may need to modify product

inventory levels in one database, customer profile information in another database, and an account

balance in yet another database.

Databases are generally hosted on more than one networked computer, so a distributed

transaction is not only across application, but also across platfoms . In Enterprise systems, we

may not be comunicating directly with a database, but with services, which in turn connect to a

database. Thus services fall into the scope of distributed transactions. Many aspects of a distributed

transaction are identical to a transaction whose scope is a single database. For example, a

distributed transaction provides predictable behavior by enforcing the ACID properties that define

all transactions.

Transaction Scope

The TransactionScope class provides a simple way to mark a block of code as participating in a

transaction, without requiring you to interact with the transaction itself. A transaction scope can

select and manage the transaction automatically. You do not need to enlist resources explicitly with

the transaction. Any System.Transactions resource manager can detect the existence of a

transaction created by the scope and automatically enlist, as support bythe .Net framework.

Creating a transaction scope

The transaction scope is started once you create a new TransactionScope object. As illustrated in

the code sample for this spike, Microsoft recommends that you create scope with a using statement,

which works like a try...finally block to ensure that the scope is disposed of properly.

 try

 {

 using (TransactionScope ts = new TransactionScope())

 {

 //method to updatedb

 //perform update

 //peform other update

 //call a service

 ts.Complete();

 }

 }

 catch

 {

When you instantiate TransactionScope, the transaction manager determines which transaction to

participate in. Once determined, the scope always participates in that transaction.

Completing a transaction scope

When your application completes all the work it wants to perform in a transaction, you should call

the Complete method only once to inform the transaction manager that it is acceptable to commit

the transaction. Microsoft recommends putting the call to Complete as the last statement in the

using block. Failing to call this method aborts the transaction, because the transaction manager

interprets this as a system failure, or equivalent to an exception thrown within the scope of

transaction. However, calling this method does not guarantee that the transaction will be

committed. It is merely a way of informing the transaction manager of your status.

If the TransactionScope object created the transaction initially, the actual work of committing the

transaction by the transaction manager occurs after the last line of code in the using block. If it did

not create the transaction, the commit occurs whenever Commit is called by the owner of the

CommittableTransaction object. At that point the Transaction Manager calls the resource managers

and informs them to either commit or rollback, based on whether the Complete method was called

on the TransactionScope object.

The using statement ensures that the Dispose method of the TransactionScope object is called even

if an exception occurs. The Dispose method marks the end of the transaction scope. Exceptions that

occur after calling this method may not affect the transaction. This method also restores the

ambient transaction to it previous state.

A TransactionAbortedException is thrown if the scope creates the transaction, and the transaction is

aborted. A TransactionIndoubtException is thrown if the transaction manager cannot reach a

Commit decision. No exception is thrown if the transaction is committed.

Rolling back a transaction

If you want to rollback a transaction, you should not call the Complete method within the

transaction scope. For example, you can throw an exception within the scope. The transaction in

which it participates in will be rolled back.

Creating a Distributed Transaction

You can administer distributed transactions through the Microsoft Distributed Transaction

Coordinator (DTC), which is included with the Component Services administrative tool. The DTC

provides services designed to ensure successful and complete transactions, even with system

failures, process failures, and communication failures. Each computer participating in a distributed

transaction manages its own resources and data and also acts in concert with other computers in the

transaction. Above all, a distributed transaction must commit or abort its work entirely on all

participating computers. The DTC performs the transaction coordination role for the components

http://msdn.microsoft.com/en-us/library/system.transactions.transactionscope.complete.aspx
http://msdn.microsoft.com/en-us/library/system.transactions.transactionscope.dispose.aspx

involved and acts as a transaction manager for each computer that manages transactions.

The DTC uses the two-phase commit protocol. Phase one involves the transaction manager

requesting each component to prepare to commit; in phase two, if all component s successfully

prepare, the transaction manager broadcasts the commit decision.

In general, transactions involve the following steps:

1. Applications call the transaction manager to begin a transaction.

2. When the application has prepared its changes, it asks the transaction manager to commit

the transaction. The transaction manager keeps a sequential transaction log so that its

commit or abort decisions will be durable.

 If all components are prepared, the transaction manager commits the transaction and

the log is cleared.

 If any component cannot prepare, the transaction manager broadcasts an abort

decision to all elements involved in the transaction.

 While a component remains prepared but not committed or aborted, it is in doubt

about whether the transaction committed or aborted. If a component or transaction

manager fails, it reconciles in-doubt transactions when it reconnects.

DTC Components

In Microsoft Windows, the DTC is a system service that is tightly integrated with COM+. To help

make distributed transactions work more seamlessly, COM+ directs the DTC on behalf of an

application. This makes it possible to scale transactions from one to many computers without adding

special code.

When a COM+ application requires a transaction to span multiple computers, the DTC makes it

possible by generating a transaction ID, managing transaction-related communications, and enlisting

resources. When the DTC enlists a resource in a transaction, it extends the transaction's protection

to that resource.

To perform specialized tasks within a distributed transaction, the DTC architecture includes the

following elements:

 The DTC transaction manager

 The DTC log

 The DTC proxy

 The Component Services administrative tool

 The DTC Files

(see the reference website for further information on this)

2. CONFIGURATION

Configuring DTC and WS-Atomic Transaction for WCF distributed transactions

WCF transactions rely on Microsoft DTC (Distributed Transaction Coordinator) to coordinate the

transaction between multiple services and DTC itself relies on WS-AT to communicate between the

DTC instances on different machines.

MS DTC is configured via the Component Services Console, which can be started using the

dcomcfng.exe command from the command prompt. Once you are inside Component Service

Console, browse to the Console Root\Component Services\Computers\My Computer\Distributed

Transaction Coordinator on the tree view menu on the left and right click on the Local DTC and go

into its property.

Go to the Security tab on the property dialog.

To ensure that DTC works over the network on multiple machines, tick the Network DTC Access

option, tick the Allow Remote Clients option, and tick the Allow Inbound and Allow Outbound

options.

Since this demonstration is run on a workgroup rather than on two machines within the same Active

Directory domain, we will have to tick the No Authentication Required option as well.

Once the DTC is configured as per the above, the next step is to configure the WS-Atomic

Transaction feature. We have to enable the WS-AT component by running this command line.

regasm.exe /codebase WsatUI.dll

The regasm.exe can be found in %PROGRAMFILES%\Microsoft SDKs\Windows\v6.0\Bin, and it must

be run under administrator privilege.

The WS-AT component requires the use of certificates to establish trusts between machines. This

involves a certificate (cert A) being issued and registered on computer A and exported to a file and

imported to computer B. While on the other end, a certificate (cert B) needs to be issued and

registered on computer B, and then exported to a file and imported to computer A.

To do this you must first create a root certificate which will allow you to create and sign other

certificates. The command to create a root certificate looks like this.

makecert.exe -pe -n CN=MSDTC-Wsat-CA -cy authority -r -sv Msdtc.pvk Msdtc.cer

After that, install the root certificate on your machine with the following command.

makecert.exe -ss Root -sr LocalMachine -n CN=MSDTC-Wsat-CA -cy authority -r -sv Msdtc.pvk

Once the root certificate is installed, you can use that root certificate to create and sign another

certificate that allows different computers to exchange data. This needs to be done on both

machines in our demonstration.

makecert -ss My -sr LocalMachine -n CN=%COMPUTERNAME%.%USERDNSDOMAIN% -sky exchange

-ir LocalMachine -iv Msdtc.pvk -ic Msdtc.cer

Once the certificate is created, add it to your list of personal certificates. This can be done via the

management console (mmc). Expand the Certificates (Local Computer)\Personal\ and the right click

on Certificate node and click on All Tasks\Import on the context menu. Browse to the location

where you have saved your personal certificate file created in the previous step and import it.

A new certificate (eg WILLS-ASUS) will be added to your personal certificate list. Export the

certificate by right clicking on it and then clicking on the All Tasks\Export menu.

The exported cer file will need to be copied to the remote machine and then imported from that end

to establish the trust. To import the cer file, simply start the MMC and expand the Certificates (Local

Computer)\Personal \ tree and then right click on the Certificates node and select the All

Tasks\Import menu and browse to the cer file exported above.

Repeat the step of creating, registering and exporting a certificate on the remote computer and then

import the cer file on your local computer to complete the steps of establishing the trust between

the two machines.

Once the certificates have been registered on both ends, you can use wsatconfig to configure WS-AT

to use these certificates. You will need to obtain the thumbprints of both certificates by double

clicking on each certificate in the MMC GUI.

Copy the thumbprint into the wsatconfig command without the spaces. Use your local machine

certificate thumbprint on endpointCert and the remote machine certificate on the accountCerts

WsatConfig.exe –network:enable –port:8443 –endpointCert:<thumbprint> -

accountsCerts:<thumbprint"> -restart

The above steps complete the DTC and WS-AT configuration for this demonstration. Remember to

run all the commands under admin privilege.

3. DEVELOPMENT

Building the Spike Solution

Step 1: Create the database.
Either import an SQL DDL file, or follow following steps to create a new database:

1. Open Visual Studio

2. Right-click “Data Connections”

3. Click “Create New SQL Server Database”

4. Enter .\SQLEXPRESS as the server name, and choose a database name. Click OK

5. Create database according to required structure.

Step 2: Create two WCF services
Please refer to the Windows Communication Foundation spike for more detailed information. For

the endpoint, you need to use either net.tcp, or wsHttp – Other bindings do not support

transactions.

If using wsHttp on a custom port, you need to allow your user to bind to the port. Run the following

command to do so:

netsh http add urlacl url=http://+:54321/ user=COMPUTERNAME\Username

(where 54321 is the port number, COMPUTERNAME is the name of your computer, and Username is

your username on your computer)

There are several steps required to enable transactions in a WCF service.

Step 3: Enable transactions in the service – Set up binding
Open the WCF config editor by right-clicking the App.config file and clicking “Edit WCF

Configuration". Expand the Bindings folder and ensure that a binding exists under it:

If there is no binding listed, right-click Bindings, click New, and add a new wsHttpBinding.

Click on the binding, and change the TransactionFlow property to true.

Click on the endpoint (wsHttp in the above screenshot) and set the binding to your custom binding

(wsHttp).

Step 4: Enable transactions in the service – Add transaction support to

service interface
In the service interface, add the TransactionFlow(TransactionFlowOption.Allowed) attribute to all

methods that need to support transactions. For example:

[ServiceContract]
public interface ISpike20Service
{
 [OperationContract]
 [TransactionFlow(TransactionFlowOption.Allowed)]
 void InsertMessage(string message);
}

This tells the WCF framework that transactions are allowed to “flow” from the client into the service.

In the service implementation, add the OperationBehavior(TransactionScopeRequired = true)

attribute to all methods that need to support transactions. For example:

public class Spike20Service : ISpike20Service
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void InsertMessage(string message)
 {
 // ... stuff here
 }
}

This tells the WCF framework that a transaction scope is required to call the method.

Step 5: Add transaction support to the client code
In your calling code, wrap all code in a TransactionScope. This runs all the calls in a single

transaction. If the transaction is successful, call the Complete method on the transaction scope,

which will commit all the changes performed in the transaction.

using (TransactionScope transaction = new TransactionScope(TransactionScopeOption.
RequiresNew))
{
 try
 {
 // ... Call client methods here
 transaction.Complete();
 }
 catch (Exception ex)
 {
 // Something bad happened! Log the error.
 // If the WCF channel is faulted, we need to "reset" it
 // http://stackoverflow.com/questions/2008382/how-to-heal-
faulted-wcf-channels
 if (client.InnerChannel.State == CommunicationState.Faulted)
 {
 client.Abort();
 ((IDisposable)client).Dispose();
 client = new Spike20ServiceClient();
 }

 transaction.Dispose();
 }
}

The last section in the “catch” is required because when a fault occurs, the WCF channel is no longer

usable. In order to send more requests to the same client, a new client instance needs to be created.

References

Transaction Defined - msdn.microsoft.com/en-us/library/ms973833.aspx

Transaction Scope - msdn.microsoft.com/en-us/library/ms172152.aspx

Distributed Transactions

 - msdn.microsoft.com/en-us/library/ms681291%28VS.85%29.aspx

- msdn.microsoft.com/en-us/library/ms683623(v=VS.85).aspx

- support.microsoft.com/kb/316247

Transaction Promotion - msdn.microsoft.com/en-us/library/ms131083.aspx

Faulted WCF Channel

 - stackoverflow.com/questions/2008382/how-to-heal-faulted-wcf-channels

WSAtomicTransactions – msdn.microsoft.com/en-us/library/ms733943.aspx

WCF – Spike 07 WCF

Makecert - www.digitallycreated.net

http://www.digitallycreated.net/

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.

.
N
E
T
\
S
p
i
k
e
s
\
S
p
i
k
e
2
0
\
S
p
i
k
e
2
0
.
C
l
i
e
n
t
\
P
r
o
g
r
a
m
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
S
e
r
v
i
c
e
M
o
d
e
l
;

3
u
s
i
n
g

S
y
s
t
e
m
.
T
r
a
n
s
a
c
t
i
o
n
s
;

4
u
s
i
n
g

S
p
i
k
e
2
0
.
C
l
i
e
n
t
.
I
n
t
e
r
n
a
l
S
e
r
v
i
c
e
;

5
u
s
i
n
g

S
p
i
k
e
2
0
.
C
l
i
e
n
t
.
S
e
r
v
i
c
e
R
e
f
e
r
e
n
c
e
s
;

67
n
a
m
e
s
p
a
c
e

S
p
i
k
e
2
0
.
C
l
i
e
n
t

8
{

9

c
l
a
s
s

P
r
o
g
r
a
m

1
0

{

1
1

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)

1
2

{

1
3

S
p
i
k
e
2
0
S
e
r
v
i
c
e
C
l
i
e
n
t

c
l
i
e
n
t

=

n
e
w

S
p
i
k
e
2
0
S
e
r
v
i
c
e
C
l
i
e
n
t
(
)
;

1
4

I
n
t
e
r
n
a
l
S
e
r
v
i
c
e
C
l
i
e
n
t

i
n
t
e
r
n
a
l
C
l
i
e
n
t

=

n
e
w

I
n
t
e
r
n
a
l
S
e
r
v
i
c
e
C
l
i
e
n
t
(
)
;

1
5

1
6

i
n
t
e
r
n
a
l
C
l
i
e
n
t
.
R
e
s
e
t
C
o
u
n
t
(
)
;

1
7

1
8

w
h
i
l
e

(
t
r
u
e
)

1
9

{

2
0

C
o
n
s
o
l
e
.
W
r
i
t
e
(
"
E
n
t
e
r

a

m
e
s
s
a
g
e
:

"
)
;

2
1

s
t
r
i
n
g

m
e
s
s
a
g
e

=

C
o
n
s
o
l
e
.
R
e
a
d
L
i
n
e
(
)
;

2
2

u
s
i
n
g

(
T
r
a
n
s
a
c
t
i
o
n
S
c
o
p
e

t
r
a
n
s
a
c
t
i
o
n

=

n
e
w

T
r
a
n
s
a
c
t
i
o
n
S
c
o
p
e
(
T
r
a
n
s
a
c
t
i
o
n
S
c
o
p
e
O
p
t
i
o
n
.

R
e
q
u
i
r
e
s
N
e
w
)
)

2
3

{

2
4

t
r
y

2
5

{

2
6

c
l
i
e
n
t
.
I
n
s
e
r
t
M
e
s
s
a
g
e
(
m
e
s
s
a
g
e
)
;

2
7

i
n
t
e
r
n
a
l
C
l
i
e
n
t
.
I
n
c
r
e
m
e
n
t
C
o
u
n
t
(
)
;

2
8

t
r
a
n
s
a
c
t
i
o
n
.
C
o
m
p
l
e
t
e
(
)
;

2
9

}

3
0

c
a
t
c
h

(
E
x
c
e
p
t
i
o
n

e
x
)

3
1

{

3
2

C
o
n
s
o
l
e
.
F
o
r
e
g
r
o
u
n
d
C
o
l
o
r

=

C
o
n
s
o
l
e
C
o
l
o
r
.
R
e
d
;

3
3

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
C
o
u
l
d
n
'
t

a
d
d

t
h
a
t

m
e
s
s
a
g
e

-

{
0
}
!
"
,

3
4

e
x
.
I
n
n
e
r
E
x
c
e
p
t
i
o
n

!
=

n
u
l
l

?

e
x
.
I
n
n
e
r
E
x
c
e
p
t
i
o
n
.
M
e
s
s
a
g
e

:

e
x
.

M
e
s
s
a
g
e
)
;

3
5

C
o
n
s
o
l
e
.
F
o
r
e
g
r
o
u
n
d
C
o
l
o
r

=

C
o
n
s
o
l
e
C
o
l
o
r
.
G
r
a
y
;

3
6

3
7

/
/

I
f

t
h
e

W
C
F

c
h
a
n
n
e
l

i
s

f
a
u
l
t
e
d
,

w
e

n
e
e
d

t
o

"
r
e
s
e
t
"

i
t

3
8

/
/

h
t
t
p
:
/
/
s
t
a
c
k
o
v
e
r
f
l
o
w
.
c
o
m
/
q
u
e
s
t
i
o
n
s
/
2
0
0
8
3
8
2
/
h
o
w
-
t
o
-
h
e
a
l
-
f
a
u
l
t
e
d
-
w
c
f
-
c
h
a
n
n
e
l
s

3
9

i
f

(
c
l
i
e
n
t
.
I
n
n
e
r
C
h
a
n
n
e
l
.
S
t
a
t
e

=
=

C
o
m
m
u
n
i
c
a
t
i
o
n
S
t
a
t
e
.
F
a
u
l
t
e
d
)

4
0

{

4
1

c
l
i
e
n
t
.
A
b
o
r
t
(
)
;

4
2

(
(
I
D
i
s
p
o
s
a
b
l
e
)
c
l
i
e
n
t
)
.
D
i
s
p
o
s
e
(
)
;

4
3

c
l
i
e
n
t

=

n
e
w

S
p
i
k
e
2
0
S
e
r
v
i
c
e
C
l
i
e
n
t
(
)
;

4
4

}

4
5

4
6

t
r
a
n
s
a
c
t
i
o
n
.
D
i
s
p
o
s
e
(
)
;

4
7

}

4
8

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
M
e
s
s
a
g
e
s

s
o

f
a
r

=

{
0
}
"
,

i
n
t
e
r
n
a
l
C
l
i
e
n
t
.
G
e
t
C
o
u
n
t
(
)
)
;

4
9

}

5
0

}

5
1

}

5
2

}

5
3

}

5
4

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
S
p
i
k
e
s
\
S
p
i
k
e
2
0
\
S
p
i
k
e
2
0
.
S
e
r
v
i
c
e
\
I
S
p
i
k
e
2
0
S
e
r
v
i
c
e
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
.
S
e
r
v
i
c
e
M
o
d
e
l
;

23
n
a
m
e
s
p
a
c
e

S
p
i
k
e
2
0
.
S
e
r
v
i
c
e

4
{

5

[
S
e
r
v
i
c
e
C
o
n
t
r
a
c
t
]

6

p
u
b
l
i
c

i
n
t
e
r
f
a
c
e

I
S
p
i
k
e
2
0
S
e
r
v
i
c
e

7

{

8

[
O
p
e
r
a
t
i
o
n
C
o
n
t
r
a
c
t
]

9

[
T
r
a
n
s
a
c
t
i
o
n
F
l
o
w
(
T
r
a
n
s
a
c
t
i
o
n
F
l
o
w
O
p
t
i
o
n
.
A
l
l
o
w
e
d
)
]

1
0

v
o
i
d

I
n
s
e
r
t
M
e
s
s
a
g
e
(
s
t
r
i
n
g

m
e
s
s
a
g
e
)
;

1
1

}

1
2

}

1
3

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.
\
S
p
i
k
e
s
\
S
p
i
k
e
2
0
\
S
p
i
k
e
2
0
.
S
e
r
v
i
c
e
\
S
p
i
k
e
2
0
S
e
r
v
i
c
e
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
y
s
t
e
m
.
S
e
r
v
i
c
e
M
o
d
e
l
;

34
n
a
m
e
s
p
a
c
e

S
p
i
k
e
2
0
.
S
e
r
v
i
c
e

5
{

6

p
u
b
l
i
c

c
l
a
s
s

S
p
i
k
e
2
0
S
e
r
v
i
c
e

:

I
S
p
i
k
e
2
0
S
e
r
v
i
c
e

7

{

8

[
O
p
e
r
a
t
i
o
n
B
e
h
a
v
i
o
r
(
T
r
a
n
s
a
c
t
i
o
n
S
c
o
p
e
R
e
q
u
i
r
e
d

=

t
r
u
e
)
]

9

p
u
b
l
i
c

v
o
i
d

I
n
s
e
r
t
M
e
s
s
a
g
e
(
s
t
r
i
n
g

m
e
s
s
a
g
e
)

1
0

{

1
1

i
f

(
m
e
s
s
a
g
e

=
=

n
u
l
l
)

1
2

t
h
r
o
w

n
e
w

A
r
g
u
m
e
n
t
N
u
l
l
E
x
c
e
p
t
i
o
n
(
"
m
e
s
s
a
g
e
"
)
;

1
3

1
4

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
R
e
c
e
i
v
e
d

I
n
s
e
r
t
M
e
s
s
a
g
e

c
a
l
l

-

{
0
}
"
,

m
e
s
s
a
g
e
)
;

1
5

1
6

S
p
i
k
e
2
0
E
n
t
i
t
i
e
s

e
n
t
i
t
i
e
s

=

n
e
w

S
p
i
k
e
2
0
E
n
t
i
t
i
e
s
(
)
;

1
7

/
/

C
r
e
a
t
e

b
o
t
h

n
e
w

m
e
s
s
a
g
e

e
n
t
i
t
i
e
s

1
8

M
e
s
s
a
g
e

d
b
M
e
s
s
a
g
e

=

n
e
w

M
e
s
s
a
g
e

{

M
e
s
s
a
g
e
T
e
x
t

=

m
e
s
s
a
g
e
,

D
a
t
e

=

D
a
t
e
T
i
m
e
.
N
o
w

}
;

1
9

M
e
s
s
a
g
e
2

d
b
M
e
s
s
a
g
e
2

=

n
e
w

M
e
s
s
a
g
e
2

{

M
e
s
s
a
g
e
T
e
x
t

=

m
e
s
s
a
g
e
,

D
a
t
e

=

D
a
t
e
T
i
m
e
.
N
o
w

}
;

2
0

2
1

t
r
y

2
2

{

2
3

/
/

T
r
y

t
o

a
d
d

b
o
t
h

m
e
s
s
a
g
e

e
n
t
i
t
i
e
s

2
4

e
n
t
i
t
i
e
s
.
M
e
s
s
a
g
e
s
.
A
d
d
O
b
j
e
c
t
(
d
b
M
e
s
s
a
g
e
)
;

2
5

e
n
t
i
t
i
e
s
.
S
a
v
e
C
h
a
n
g
e
s
(
)
;

2
6

e
n
t
i
t
i
e
s
.
M
e
s
s
a
g
e
s
2
.
A
d
d
O
b
j
e
c
t
(
d
b
M
e
s
s
a
g
e
2
)
;

2
7

e
n
t
i
t
i
e
s
.
S
a
v
e
C
h
a
n
g
e
s
(
)
;

2
8

}

2
9

c
a
t
c
h

(
E
x
c
e
p
t
i
o
n

e
x
)

3
0

{

3
1

C
o
n
s
o
l
e
.
F
o
r
e
g
r
o
u
n
d
C
o
l
o
r

=

C
o
n
s
o
l
e
C
o
l
o
r
.
R
e
d
;

3
2

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
E
R
R
O
R
:

{
0
}
"
,

e
x
.
I
n
n
e
r
E
x
c
e
p
t
i
o
n

!
=

n
u
l
l

?

e
x
.
I
n
n
e
r
E
x
c
e
p
t
i
o
n
.
M
e
s
s
a
g
e

:

e
x
.
M
e
s
s
a
g
e
)
;

3
3

C
o
n
s
o
l
e
.
F
o
r
e
g
r
o
u
n
d
C
o
l
o
r

=

C
o
n
s
o
l
e
C
o
l
o
r
.
G
r
a
y
;

3
4

3
5

/
/

T
h
r
o
w

t
h
e

e
x
c
e
p
t
i
o
n

b
a
c
k

t
o

t
h
e

c
a
l
l
e
r

3
6

t
h
r
o
w
;

3
7

}

3
8

}

3
9

}

4
0

}

4
1

1
C
:
\
U
s
e
r
s
\
D
a
n
i
e
l
\
D
o
c
u
m
e
n
t
s
\
M
y

D
r
o
p
b
o
x
\
U
n
i
\
H
I
T
3
0
9
9

.
.
.

.
N
E
T
\
S
p
i
k
e
s
\
S
p
i
k
e
2
0
\
S
p
i
k
e
2
0
.
S
e
r
v
i
c
e
H
o
s
t
\
P
r
o
g
r
a
m
.
c
s

1
u
s
i
n
g

S
y
s
t
e
m
;

2
u
s
i
n
g

S
p
i
k
e
2
0
.
S
e
r
v
i
c
e
;

34
n
a
m
e
s
p
a
c
e

S
p
i
k
e
2
0
.
S
e
r
v
i
c
e
H
o
s
t

5
{

6

c
l
a
s
s

P
r
o
g
r
a
m

7

{

8

s
t
a
t
i
c

v
o
i
d

M
a
i
n
(
s
t
r
i
n
g
[
]

a
r
g
s
)

9

{

1
0

S
y
s
t
e
m
.
S
e
r
v
i
c
e
M
o
d
e
l
.
S
e
r
v
i
c
e
H
o
s
t

h
o
s
t

=

n
e
w

S
y
s
t
e
m
.
S
e
r
v
i
c
e
M
o
d
e
l
.
S
e
r
v
i
c
e
H
o
s
t
(
t
y
p
e
o
f

(
S
p
i
k
e
2
0
S
e
r
v
i
c
e
)
)
;

1
1

h
o
s
t
.
O
p
e
n
(
)
;

1
2

C
o
n
s
o
l
e
.
W
r
i
t
e
L
i
n
e
(
"
S
e
r
v
i
c
e

r
u
n
n
i
n
g
"
)
;

1
3

C
o
n
s
o
l
e
.
R
e
a
d
L
i
n
e
(
)
;

1
4

h
o
s
t
.
C
l
o
s
e
(
)
;

1
5

}

1
6

}

1
7

}

1
8

